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Firing activity from neural ensembles in rat hippocampus has been pre-
viously used to determine an animal’s position in an open environment
and separately to predict future behavioral decisions. However, a unified
statistical procedure to combine information about position and behavior
in environments with complex topological features from ensemble hip-
pocampal activity has yet to be described. Here we present a two-stage
computational framework that uses point process filters to simultane-
ously estimate the animal’s location and predict future behavior from
ensemble neural spiking activity. First, in the encoding stage, we lin-
earized a two-dimensional T-maze, and used spline-based generalized
linear models to characterize the place-field structure of different neu-
rons. All of these neurons displayed highly specific position-dependent
firing, which frequently had several peaks at multiple locations along
the maze. When the rat was at the stem of the T-maze, the firing activity
of several of these neurons also varied significantly as a function of the
direction it would turn at the decision point, as detected by ANOVA.
Second, in the decoding stage, we developed a state-space model for
the animal’s movement along a T-maze and used point process filters to
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3306 Y. Huang et al.

accurately reconstruct both the location of the animal and the probabil-
ity of the next decision. The filter yielded exact full posterior densities
that were highly nongaussian and often multimodal. Our computational
framework provides a reliable approach for characterizing and extracting
information from ensembles of neurons with spatially specific context or
task-dependent firing activity.

1 Introduction

The firing activity of place cells in the CA1 region of rat hippocampus has
been shown to correlate with the location of the animal while exploring
its environment. Ensembles of hippocampal neurons have been shown to
maintain robust representations of the animal’s position (O’Keefe & Dostro-
vsky, 1971; O’Keefe, 1979; Wilson & McNaughton, 1993), and decoding
analyses have successfully been used to reconstruct the trajectory of a rat
running through either open environments or linear tracks using ensem-
ble spiking activity, based on Bayesian statistical methods (Barbieri et al.,
2004; Brown, Frank, Tang, Quirk, & Wilson, 1998; Zhang, Ginzburg, Mc-
Naughton, & Sejnowski, 1998). Point process filters have been applied with
great success to address problems of estimating a continuous state variable,
such as the animal’s position, from neural spike train observations (Barbieri
et al., 2004; Brown et al., 1998). Often these point process filters are based
on gaussian approximations to the posterior density, allowing explicit for-
mulas to be derived for updating the posterior mean and variance (Brown
et al., 1998; Eden, Frank, Barbieri, Solo, & Brown, 2004). Gaussian approxi-
mate filters have been used effectively for decoding in open environments
or on linear tracks, but they may be inappropriate for decoding on envi-
ronments with more complicated topologies, and specifically on T-shaped
mazes, since the posterior can often be nongaussian and multimodal.

Certain spatially specific hippocampal neurons have also been shown to
fire differently during memory tasks as a function of the animal’s recent past
or future behavior (Lee, Griffin, Zilli, Eichenbaum, & Hasselmo, 2006; Grif-
fin, Eichenbaum, & Hasselmo, 2007; Smith & Mizumori, 2006; Hasselmo &
Eichenbaum, 2005; Ferbinteanu & Shapiro, 2003; Frank, Brown, & Wilson,
2000). These cells have been termed splitter cells (Wood, Dudchenko, Robit-
sek, & Eichenbaum, 2000). For example, in rats trained to perform a contin-
uous alternation task on a T-shaped maze, several neurons were recorded
that would fire intensely along the common stem of the track preceding
turns to one direction, while firing less intensely or not at all preceding
turns in the opposite direction. This suggests that these neurons encode
information about spatial location and behavioral context simultaneously.

This article focuses on understanding how ensembles represent infor-
mation about location, history, and context and use this information to
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Decoding Movement Trajectories 3307

make decisions about future behavior. Constructing appropriate models
for the firing activity of these neurons presents a number of statistical
challenges. First, it is not obvious how to most appropriately incorporate
information about position and future decisions in a single neural model.
Poorly chosen models may not accurately capture the neural representation
of these signals. Second, since many of the neurons have multimodal place
fields that are active at multiple locations in the environment, it is necessary
to develop a class of models that is sufficiently flexible to capture complex
functional relations. Additionally, there are dual statistical challenges
associated with using the ensemble activity from this area to reconstruct, or
decode, the animal’s movement trajectory and predict its future decisions.
First, how do we build a decoding algorithm that can simultaneously recon-
struct the animal’s movement trajectory and predict its future movement?
Second, we expect the posterior distribution for the animal’s position to be
nongaussian and have multiple modes associated with turning to each di-
rection. Therefore, established methods based on gaussian approximations
to the posterior will not be applicable. Exact numerical methods of com-
puting the posterior distribution such as numerical integration and particle
filtering become computationally intractable at higher dimensions, so sim-
plifying assumptions are necessary to compute estimates accurately and
efficiently.

To address these challenges, a simple point process framework was de-
veloped to model the spiking activity of an ensemble of neurons from the
CA1 region of hippocampus and reconstruct the animal’s position from the
combined activity of this ensemble. By linearizing the maze and assuming
that the neurons predominantly represented distance along the track rather
than side-to-side position on the track, we were able to greatly reduce the
computational complexity of the problem and compute the optimal filtering
distributions at high resolution numerically. In practice, we first character-
ized the firing activity of each of the neurons in the ensemble. Next, we
examined how information from the joint activity of an ensemble of neu-
rons could be combined to reconstruct the animal’s trajectory through the
maze and predict future decisions. We constructed point process filters to
iteratively calculate the full posterior probability for the animal’s position
at each time step, given the complete firing activity until the current time.

The remainder of this article is organized as follows. Section 2 de-
scribes the experimental methods used to train the animals and collect
electrophysiological data. Sections 3 and 4 develop the neural models and
estimation algorithms used in the encoding and decoding analyses, as well
as statistical measures of goodness of fit. Section 5 presents the results of
these analyses on the ensemble hippocampal activity. Finally, section 6
provides a discussion of the potential advantages of this framework and
how it can be extended to modeling position and context-dependent firing
in general maze environments.
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3308 Y. Huang et al.

2 Experimental Methods

In order to provide an illustration of the use of these analysis techniques,
we have applied the modeling and estimation framework to the analysis of
an example set of electrophysiological data. The experimental methods are
described in detail in Lee et al. (2006). Briefly, one male Long Evans rat was
implanted with a movable array of 12 recording tetrodes (four 12.7 micron
diameter nichrome wires) and trained to perform a continuous alternation
task conducted on a modified T-maze (116 × 107 cm long, 10 cm wide) that
contained return arms (112 cm long, 10 cm wide) connecting the food wells
to the start of the stem. Each reward zone contained a small plastic disc
appropriately baited with chocolate sprinkles. The animal would start at
the food well and walk down the return arm toward the base of the stem. It
would turn onto the stem and run toward the T-intersection, where a choice
would need to be made. A correct choice is to alternate between left and right
on successive turns. If a correct turn is made, the animal receives a reward
and continues on to the next trial. If an error is made, the animal is not given
a reward and must make another lap to make a correct choice. All animal
procedures and surgery were in accordance with National Institutes of
Health and Boston University Animal Care and Use Committee guidelines.

Neural signals were amplified and bandpass filtered 0.3 kHz to 6 kHz
(Neuralynx, Tucson, AZ), and threshold crossings were recorded. Single
units were extracted from tetrode recordings using standard cluster cut-
ting techniques (Offline Sorter, Plexon, Inc.). Principal component and en-
ergy waveform measurements were used to increase unit isolation quality.
Recordings were made from multiple single CA1 neurons, and position
data were recorded at 30 Hz (frames/sec). An array of diodes positioned
on the head stage of the animal allowed a video camera to track the posi-
tion of the animal during behavior. An ensemble of 47 neurons that fired
more than two spikes over the entire experimental session was used for this
analysis. The recorded data for one of the neurons in the ensemble is shown
in Figure 1. The movement trajectory of the rat is shown in gray, and the
locations at which this neuron fired are shown in black. There are 69 trials
in this session, and 3 of these trials were error trials.

Position and spiking data from resting periods before and after each run-
ning session were removed, and linear interpolation was used to determine
the coordinates of a few missing location points that occurred when the
diode array on the headstage was occluded.

3 Encoding Methods

3.1 Two-Dimensional Memory/Prediction Tasks and Linearization.
We began by linearizing the two-dimensional (2D) T-shaped maze into a
one-dimensional (1D) track. Since the movement of the rat is restricted on
the linear track, simple state models are more appropriate in 1D. At the same
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Decoding Movement Trajectories 3309

Figure 1: Place field for a single neuron. The movement trajectory of the rat is
shown in gray, and the locations at which the neuron fired are illustrated by
black dots. Times at which the animal was in the resting area in the lower right
corner were removed from the analysis.

time, treating the problem in 1D decreases the complexity of the problem,
simplifies the calculations, and allows us to address questions about how
the brain represents position in linear environments.

Figure 2 illustrates the methodology that was used to linearize the track.
Figure 2A shows the original shape of the track in two dimensions, with
individual sections shaded to show where they appear in the linearization.
Figure 2B shows the resulting linearized track. We rotated the light-gray-
with-horizontal-stripes and dark-gray-with-vertical-stripes sections, so
they became respective extensions of the dark-gray-with-horizontal-stripes
and light-gray-with-vertical-stripes sections of the horizontal part of the
maze. When the animal was on the center stem of the maze, the region
to which its position was mapped was determined by the direction it
would turn when it next reached the decision point. We mapped the points
preceding left turns to the light gray region and those preceding right turns
to the dark gray region.

This linearization represents a transformation of the actual 2D coordi-
nate position of the animal, (x, y), to a single coordinate, xl . At each point in
time, the animal’s true position can be transformed to the linearized coordi-
nate system, and its trajectory through the maze becomes a trajectory in 1D.
The 1D coordinate itself indicates the total distance, in units of pixels, from
the connection point at the lower end of the T-maze, with negative numbers
indicating trajectories that include a left turn and positive numbers indicat-
ing ones that include a right turn. For example, a trajectory where the animal
starts at the connection point and ends at the turn-decision point maps to
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3310 Y. Huang et al.

Figure 2: Linearization of a T-maze. (A) Original shape of the track in two
dimensions, with individual sections shaded to show where they appear in the
linearization. (B) The resulting linearized track. We rotated the light-gray-with-
horizontal-stripes and dark-gray-with-vertical-stripes sections, so they became
respective extensions of the dark-gray-with-horizontal-stripes and light-gray-
with-vertical-stripes sections of the horizontal part of the maze. When the an-
imal was on the center stem of the maze, the region to which its position was
mapped was determined by the direction it would turn when it next reached
the decision point (marked in A, corresponding to the points ±245 on the 1D
track). We mapped the points preceding left turns to the light gray region and
those preceding right turns to the dark gray region. The connection point as
shown in the original T-maze (A) is matched to three points in the linearized
track (B) as marked by dots. By identifying these three points, the linearized
maze is topologically equivalent to a figure eight space.

either the interval 0 to −245 or 0 to 245 in 1D. Zero to −245 corresponds
to the movement trajectory preceding left turns, and 0 to 245 corresponds
to that preceding right turns. The connection point of the original T-maze
was mapped to three distinct points in the linearized track (marked by
dots in Figure 2B): the left end, right end, and midpoint of the linearized
maze (corresponding to +/−753 and origin of the x-axis). Respectively,
the points represent the ending location for a left trial or a right trial or
the starting point for a next trial. Any point along the maze away from the
neighborhood of this connection point is topologically equivalent to a line,
in that the animal can move only forward or backward in one dimension at
such a point; however, at the connection point, the animal can travel in four
possible directions. In the topology literature, a space with this structure is
called a figure eight space or the wedge of two circles (Lee, 2008) because it
is topologically equivalent to two circles that are joined at a single point.

Although this transformation is not exactly invertible, we can define an
approximate inverse transformation that maps back the linearized position
of the animal onto a set of central paths along the T-maze. In this way, we
can compare our estimated position of the animal with its true position in
the original 2D maze.
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Decoding Movement Trajectories 3311

3.2 Modeling of the Conditional Intensity Function. A set of spiking
observations can be described in terms of the number of spikes observed
over any time interval. We define a counting process N(t) on an observation
interval (0, T], as the total number of spikes fired by a single neuron from
time 0 up to and including time t, for any t < T. N(t) is then a continuous
time specification of a stochastic point process (Cox & Isham, 1980). We
can also consider point processes in discrete time by partitioning the ob-
servation interval (0, T] evenly into K subintervals (tk−1, tk]K

k=1, for a large
integer K. A spike train can thus be expressed in terms of discrete incre-
ments �Nk = N(tk) − N(tk−1), which count the number of spikes in a single
subinterval.

It is known that any point process can be completely characterized by
its conditional intensity function (CIF) (Daley & Vere-Jones, 2003). For this
analysis, two intensity models were constructed for the firing activity of
each neuron. For the first model, an inhomogeneous Poisson model was
used to capture the spatial component for the neuron’s firing activity, in-
dependent of its past firing history. Thus, the firing rate was related solely
to the position of the animal along the linearized track. Since we observed
that the firing activity was high at multiple locations along the linearized
maze, low-dimensional parametric functions such as a gaussian-shaped
curve would not accurately capture the spatial structure of the place field.
On the other hand, spline curves that are flexible and piecewise continuous
(Hearn & Baker, 1996) have been successfully used to characterize firing
intensity as a function of time or location (Frank, Eden, Solo, Wilson, &
Brown, 2002; Kass, Ventura, & Cai, 2003). We used a spline model of the
same form as in Frank et al. (2002) to characterize the firing rate as a function
as the linearized position.

Denote by x(t) the linear position of the animal at time t. Under this
model, we assume that the firing activity in each neuron follows an inho-
mogeneous Poisson process with rate function

λ(t) = exp

{
P∑

i=1

θi gi (x(t))

}
, (3.1)

where θ i for i = 1, . . . , P are a collection of model parameters that differ for
each neuron and define the shape of the conditional intensity as a function of
the linearized position. gi (.) for i = 1, . . . , P are basis functions for cardinal
splines, defined on the position data x(t). Figure 3 shows an example for
a cardinal spline fit. Specific details of the spline basis functions used are
described in Frank et al. (2002).

Poisson spiking models rarely furnish realistic descriptions of neural
spike trains because they assume that the process is independent of history.
To begin to capture the history-dependent structure of these neurons, in
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3312 Y. Huang et al.

Figure 3: Example of a cardinal spline fit, with four control points. The gray dots
represent the control points, and they are connected by flexible smooth curves.
The curve between the two middle control points is completely determined by
these closest four control points’ magnitudes.

a second class of neural models we augmented equation 3.1 by adding a
linear history component:

λ(t | Ht) = exp

⎧⎨
⎩

P∑
i=1

θi gi (x(t)) +
Q∑

j=1

γ j�Nt− j

⎫⎬
⎭ , (3.2)

where Q is a parameter that determines how long history effects persist.
The value of Q will be determined by data, as described in section 3.4.
�Nt– j is the number of spikes this neuron previously fired in the time
interval [t − j × �t, t − j × �t + �t), where �t is the difference between
two consecutively recorded time steps in the experiment. When j varies
from 1 to Q, this model incorporates the spiking history for this neuron
from the previous time steps to Q time steps before the current time in
our model (Truccolo, Eden, Fellows, Donoghue, & Brown, 2005). The
parameters for this model include θ i for i = 1, . . . , P , which determines
the magnitude of the CIF in the absence of the modulatory history effect,
and γ j for j = 1, . . . , Q, which defines the magnitude of the effects of
past spiking activity at a given time lag. Positive coefficient values suggest
excitatory effects while negative values suggest inhibition.

Note that the first model, equation 3.1, can be considered to be nested in
the second model, equation 3.2. However, these two are different models
and we will use each of them to estimate the CIF separately.

3.3 Likelihood Function and GLM Models. We denote the parameter
vector to be estimated in equation 3.1 as β1 = [θ1, . . . , θR], and that
in equation 3.2 as β2 = [θ1, . . . , θR, γ1, . . . γQ]. We will use the notation
λm(tk | βm), m = 1, 2 for the conditional intensity function parameterized by
βm and evaluated at time step tk . Let N1:K = (�Nk)k=1,...,K . The log-likelihood
function for parameter vector β1 = [θ1, . . . , θR] is given by log L1(β1 | N1:K) =∑K

k=1 log[λ1(tk | β1)�t]�Nk − ∑K
k=1 λ1(tk | β1)�t (Bremaud, 1981; Daley &
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Decoding Movement Trajectories 3313

Vere-Jones, 2003; Brown, Barbieri, Eden, & Frank, 2003; Eden et al., 2004;
Trucollo et al., 2005).

Let β̂1 be a parameter vector at which log L1(β1 | N1:K ) attains its maxi-
mum as a function of β1, with the observed spike train data, N1:K , held fixed.
Then β̂1 is called the maximum likelihood estimator (MLE) of β1. Similarly,
the β̂2 that maximizes log L2(β2 | N1:K ) is the MLE of β2. Intuitively, the
MLE is an appropriate estimator since it represents the parameter vector
for which the observed spike train data are most likely. MLEs also pos-
sess some of the mathematically desirable optimality properties. In large
samples under certain regularity conditions, the MLE has approximately a
(multivariate) normal distribution with mean equal to the true parameter
value and covariance matrix given by the inverse of the Fisher information
matrix, allowing confidence regions for the point estimator to be rapidly
computed (Casella & Berger, 2001).

Our goal was to find β̂1 and β̂2 in order to fit the conditional intensity
functions of the forms shown in equations 3.1 and 3.2, respectively. Both
of these models fall into the class of generalized linear models (GLMs)
(McCullagh & Nelder, 1989). The GLM is an extension of the general lin-
ear regression model in which the variable being predicted, in this case
spike times, need not be gaussian. GLMs have a number of specific theoret-
ical and computational advantages. It is easily shown that for a GLM, the
log-likelihood function is concave as a function of the model parameters.
This means that maximum likelihood methods will be easy to implement
and guaranteed to converge to a global maximum. Additionally, the GLM
framework is integrated into several standard mathematical and statistical
packages. These properties make the GLM framework ideal for rapidly as-
sessing the possible relevance of a large number of covariates on the spiking
properties of neurons whose receptive fields have not previously been fully
characterized (Truccolo et al., 2005).

3.4 Goodness-of-Fit Measures. We fitted a Poisson model (model 1,
with rate function specified by equation 3.1) and a history-dependent model
(model 2, with conditional intensity function specified by equation 3.2) to
the data, respectively. For the history-dependent model, we must also de-
termine the number of time steps for which the past spiking history could
influence the current probability of firing. In other words, the value of Q in
equation 3.2 needs to be determined for each of the neurons in the ensemble.
In order to select the optimal number of parameters, the Aikaike informa-
tion criterion (AIC) function was computed, which penalizes the likelihood
function by the number of parameters used. It has the form

AIC (model) = −2 log L(β̂ | �N1:K ) + 2q ,

where the likelihood function is evaluated at the MLE of model parameters,
β̂, and q is the total number of parameters to be estimated in the model,
or the dimension of the vector β̂. The model that minimizes the AIC
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3314 Y. Huang et al.

asymptotically maximizes the cross-validation likelihood and generalizes
best to the unobserved data (Burnham & Anderson, 2002). If the AIC for
model 2 is minimized at Q = 0, the optimal conditional intensity model
reduces to model 1; otherwise equation 3.2 with the minimized value for
Q gives the optimal model in this set.

After fitting spiking data to the Poisson model and the history-dependent
model with optimal Q, it is important to determine how well the fit models
capture the structure observed in the data. For spike train data, this amounts
to characterizing how well the models predict the timing of the observed
spike events. Goodness-of-fit measures that are typically applied in con-
tinuous data analyses are not directly appropriate for point process data.
One solution to this problem is to apply the time-rescaling theorem (Brown,
Barbieri, Ventura, Kass, & Frank, 2001; Ogata, 1988; Papangelou, 1972) to
the intensity functions computed from model 1 and model 2 respectively.

Given the conditional intensity function, define �(tk) = ∫ tk
0 λ(t | Ht) dt.

By the time-rescaling theorem, if the conditional intensity function accu-
rately reflects the structure of the spiking activity, the �(tk)s will be a Poisson
process with unit rate, and the rescaled interspike intervals (ISIs), defined
as �(tk) − �(tk−1) for k = 1, . . . , K, will be independent exponential random
variables with mean 1.

A Kolmogorov-Smirnov (KS) plot is a plot of the empirical cumulative
distribution function (CDF) of the rescaled ISIs against an exponential CDF.
If the conditional intensity model accurately describes the observed spiking
data, then the KS plot should follow a 45 degree line. Confidence bounds for
the degree of agreement between a model and the data can be constructed
using the distribution of the KS statistic; the 95% confidence bounds can be
approximated as k−1/2

K ± 1.36/K 1/2, for k = 1, . . . , K (Johnson & Kotz, 1970).
If the conditional intensity function from either of our point process

models is accurate, the rescaled ISIs should be not only exponential but
also independent. Autocorrelation (ACF) plots are useful for determining
whether there is a significant correlation in the rescaled ISIs. The rescaled
ISIs are first transformed to uniform variables on the unit interval. Then the
mean-adjusted sample autocorrelation function is calculated for the trans-
formed ISIs and plotted against the lags varying from 1 to 20 to generate
an ACF plot. If our model correctly describes the spiking data, the ACF at
all lags should be close to zero (Bartlett, 1946; Shumway, 1988). Bootstrap
methods (Lehmann, 1999; Casella & Berger, 2001) were used to calculate the
empirical confidence bounds. If the conditional intensity model accurately
describes the measured spiking activity, we expect the observed correlation
values to fall within these bounds with 95% probability.

4 Decoding Methods

Bayesian state-space estimation procedures require both a state transition
model and an observation model. The observation model characterizes the
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Decoding Movement Trajectories 3315

distribution of the observed data as a function of the state, which is deter-
mined by the conditional intensity function and equation 4.3 below. The
state transition model determines the prior distribution on the evolution of
the state, p(xk | xk−1). In this application, the state model describes the sta-
tistical properties of the movement trajectory of the rat, and the observation
model describes the spiking activity as a function of this movement.

We examined the effect on decoding of two distinct state models—one
that provided minimal information about the animal’s movement trajec-
tories and another that used the observed movement statistics to improve
decoding accuracy. The first state model is a generalization of a simple ran-
dom walk to this T-maze environment. Note that by identifying the points
at x = ±753 and x = 0 along the linearized track, it is topologically equiva-
lent to a figure eight space in that it is locally linear everywhere except for
a single connection point, shown in Figure 2. Under this modified random
walk, dk , the distance the animal can move in one time step is normally
distributed with mean zero:

p(dk) ∼ N(0, σ 2). (4.1)

If the animal does not move through the connection point, then this move-
ment distance uniquely determines the next position, xk = xk−1 + dk . If the
animal does move through the connection point, then there are three possi-
ble points at this distance, and under the model, it is equally likely to move
in any of these three possible directions.

This state model generalizes a simple random walk to the linearized
maze, such that from any point in the track, the animal is equally likely
to move in any direction available to it. The transition probabilities are
such that they are approximately gaussian when the animal is far from the
connection point, but, they can be highly nongaussian, including points of
discontinuity as well as multiple local maxima, when the previous position
of the animal is near the connection point.

The framework for our second state model is similar to the first. Again,
we assume that the probability density of moving a given distance, dk , is
normally distributed with constant variance σ 2, but is now centered around
a predictable component f (xk−1):

p(dk) ∼ N( f (xk−1), σ 2). (4.2)

The drift term f (xk−1) estimates the expected movement of the animal
as a function of the animal’s current location between two adjacent time
steps. Local linear fitting (Fan & Gijbels, 1996), a form of nonparametric
regression, was performed to evaluate f at each of the linearized positions,
based on behavioral data of the animal but not the spiking data (see Figure 4
below). Similar to the adapted random walk state model, if this movement
distance does not cause the animal to pass through the connection point,
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3316 Y. Huang et al.

Figure 4: Local linear fitting. The gray dots represent the movement distance of
the animal along the linearized track between two adjacent time steps against
the animal’s current location. The black curve is our estimate for the expected
movement distance, evaluated at each of the linearized position.

the next position is uniquely determined through equation 4.2. For each
location along the return arm near the connection point, we calculated the
observed relative frequency with which the animal moved through the
connection point to the maze stem within a single time step. For this state
model, we set the probability that the animal passes through the connection
point equal to this observed relative frequency and set the probability that
the next trajectory would be a left turn or a right turn, each to one half.

In comparison to the first simple random walk state model, this state
model takes into consideration the animal’s actual behavior; therefore,
we expect a closer reconstruction of the animal’s movement. However,
if we are interested only in the information about the movement trajectory
due to the ensemble spiking activity, we may prefer to use a less informative
state model such as the modified random walk.

The goal of our decoding algorithm is to compute, at each time point,
the posterior distribution of the animal’s position along the linearized track
given the combined spiking activity of the entire neural ensemble. Notice
that when the animal is on the common stem of the T-maze, this posterior
distribution not only predicts its location on the stem, but also predicts
which direction the animal will turn when it next reaches the decision point.
For example, if the posterior distribution is multimodal with a large peak
centered at 120 and a smaller peak centered at −120, this would suggest
that the rat is approximately halfway up the stem and is more likely right
than left when it reaches the decision point.

We iteratively calculate this posterior density at each time point based on
both the state transition model and the conditional intensity models for each
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Decoding Movement Trajectories 3317

neuron in the observed ensemble. An exact expression for the unnormalized
posterior density can be derived from the Chapman-Kolmogorov equation
and Bayes’ rule (Brown et al., 1998; Brown et al., 2001),

p
(
xk | �N1

k , . . . , �NC
k

)
∝

C∏
c=1

Pr
(
�Nc

k | Hk
)∫

p(xk | xk−1)p
(
xk−1 | �N1

k−1, . . . ,�NC
k−1

)
dxk−1.

In the above expression, p(xk | xk−1) is given by either of the state
models defined by equations 4.1 and 4.2, along with the property that
movements through the connection point are equally likely to move in
each of the possible directions. We multiply this state transition probability
to the posterior distribution of the animal’s position at the previous time
step tk−1, and numerically integrate the product over all possible positions
of the animal to get a one-step prediction distribution at the current time
tk . This distribution is used as the prior distribution for the present time
step. In this case, we performed the numerical integration using a simple
Riemann sum. If integration over a much larger spatial scale or in higher
dimensions were required, well-developed methods such as importance
sampling or subregion-adaptive integration (Davis & Rabinowitz, 1984;
Genz & Kass, 1991, 1997; Evans & Swartz, 2000) should be considered for
improving the efficiency of the algorithm.

The observation distribution for each neuron at the current time,
Pr(�Nc

k | Hk), is fully characterized by its conditional intensity function.
For neuron c, we denote by λc

k the conditional intensity function at time
step tk . The probability of seeing �Nc

k spikes from this neuron during the
time interval (tk−1, tk] is

Pr
(
�Nc

k

∣∣Hk
) = M · exp

{ − λc
k�t

} · (
λc

k�t
)�Nc

k , (4.3)

where �t = tk − tk−1 is the time interval between two recorded location
points and M is an expression that does not depend on the state, xk . The
observation distribution for an ensemble of C neurons,

∏C
c=1 Pr(�Nc

k | Hk),
is multiplied by the one-step prediction density to get the posterior at the
current time.

After calculating the posterior density, the mode of the distribution was
used to estimate the location of the animal, providing a maximum a pos-
teriori (MAP) estimator. We denote this estimator by x̂k = arg maxxk P(xk |
�N1

k , . . . , �NC
k ) at time step t̂k .

The uncertainty of x̂k can be characterized by constructing confidence
intervals. The traditional approach to computing confidence intervals of
integrating the posterior density up to .025 and .975 is not suitable for two
reasons. First, since the figure eight topology of the track has no natural
starting point, an arbitrary starting point needs to be selected, which would
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3318 Y. Huang et al.

have a serious effect on the resulting confidence region. Second, whichever
starting point we choose, this approach will lead to inappropriately large
confidence bounds, since the posterior density can be multimodal and CIs
constructed this way can include long regions where the posterior density
is close to zero.

Instead, we construct confidence regions based on the highest posterior
density (HPD) (Casella & Berger, 2001). Denote by ρk the posterior density
at time step tk . To calculate the 95% confidence bounds, we find the largest
value y0 such that

∫
{x:ρk (x)>y0}

ρk(x) dx = 0.95.

The 95% confidence region is thus given by {x : ρk(x) > y0}. Note that the
HPD allows multiple separate regions at any point in time, which can be
especially informative when the animal was on the stem of the T-maze or
getting close to the decision point. It is also, by definition, the narrowest
among all 95% confidence intervals, since it is the region that corresponds
to the highest posterior densities.

At each time step, we check whether the 95% confidence interval actually
covers the true position of the animal. The total number of time steps when
this occurs is divided by the total number of time steps across the whole
experiment to calculate the coverage probability of our decoding model. A
larger coverage probability indicates that the decoding procedure is more
appropriately estimating its uncertainty about the animal’s location. The
point and interval estimators calculated in 1D can then be mapped back
in 2D using an inverse transformation (see section 3.1), and the root mean
squared error (RMSE) between the true and estimated position can be
computed.

To assess whether the models generalize well to unobserved data, cross-
validation analyses are performed (Cox, 1975; Mosteller & Tukey, 1977). We
divided both position and spiking data from the whole experiment into
two equal-length halves. The first half of data was used as the training
set, for building the observation model and the empirical state model. The
spiking information from the second half of the data was used as the test set
to reconstruct the location of the animal and compute confidence bounds.
Coverage probability and RMSE were calculated for the decoded movement
trajectories of the test set and compared with the results from decoding over
the whole experiment.

5 Results

In order to illustrate the encoding and decoding methods, we applied this
framework to the spiking activity of the 47 cell ensembles collected from
the rat performing the continuous alternation task.
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Decoding Movement Trajectories 3319

Figure 5: Encoding results for a single neuron. (A) Place field for the neu-
ron, with firing activity shown in gray and the animal’s movement trajectory
in black. (B) Conditional intensity estimation for the linearized place field by
model 1. The dots along the x-axis represent spiking activity when the animal
was at that linearized location. The spline fit for estimation of the firing rate as a
function of the linearized location is represented by the solid black curve, with
the 95% confidence bounds shown as a gray region with vertical stripes. The
gray bars are the occupancy-normalized histogram of firing activity. (C) Tempo-
ral intensity estimation by model 2 for the linearized place field. The horizontal
line equals one. The dots represent the MLEs for the exponential of the 17 coef-
ficients for the history covariates in equation 3.2, with 95% confidence bounds
indicated by the vertical bars. The MLEs for the exponential of three coefficients
significantly different from 1 are marked by stars. (D) Conditional intensity es-
timation by model 2 for the linearized place field, assuming no relevant recent
spiking activity by the current time step.

5.1 Encoding Results. By linearizing the two-dimensional track (see
section 3.1), we were able to construct and fit the two spline-based GLMs
separately for the spiking activity of each of the 47 neurons.

An example for the encoding results is shown in Figure 5 for a single
neuron whose place field was shown in Figure 1. Figure 5A shows the
movement trajectory of the rat in gray, along with the locations at which
this neuron fired in black. This neuron was most active when the animal
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3320 Y. Huang et al.

Figure 6: Goodness-of-fit results for a single neuron. (A) A KS plot for the
rescaled interspike intervals (ISIs) calculated from model 1, with the gray lines
being the 95% confidence bounds. (B) An ACF plot for the transformed ISIs,
according to encoding model 1; the horizontal lines are the 95% confidence
bounds. (C) A KS plot for the rescaled ISIs calculated from model 2. (D) An ACF
plot for the transformed ISIs, according to encoding model 2.

was at the right corner of the T-maze. Figure 5B shows the MLE of model
1, the Poisson model, fit to the linearized data. The solid black curve rep-
resents the MLE of the firing rate as a function of the animal’s location on
the track, while the gray region with vertical stripes represents a 95% con-
fidence interval for the firing rate. We can see from the plot that the neuron
spikes most when the animal’s linearized position was around 395, which
corresponds to the right corner for the original 2D maze (see Figure 2).

The goodness-of-fit analysis based on time-rescaling, KS plots, and auto-
correlation analyses as described in section 3.4 were then carried out for the
Poisson model. Figure 6A shows KS plots for the Poisson model applied to
the neuron illustrated in Figure 5. The fact that the KS plot passes outside
its 95% confidence interval suggests that this Poisson model does not fully
capture the structure in the data. In order to explore the possible reasons for
the KS test to fail, we checked the correlation of the rescaled ISIs at multiple
lags. An ACF plot constructed for the transformed ISIs according to the
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Decoding Movement Trajectories 3321

Poisson model is shown in Figure 6B. We can see a clear structure in the
ACF at the first 20 lags. This suggests that the uncaptured structure in the
data is related to dependencies between nearby spike events.

To capture the effects of spiking history on the firing properties of these
neurons, we also fit the spiking data to model 2, the history-dependent
model. The AIC function was used to determine the number of history
covariates, or the length of history to be considered. The AIC of model 2
reaches a minimum at lag 17, which suggests that our optimal model should
include the spiking for the past 17 time steps. The maximum likelihood
fits for the history-dependent model with Q equivalent to 17 are shown
in Figures 5C and 5D. Figure 5C shows the MLEs for the exponential of
the 17 coefficients for the history covariates of this neuron and their 95%
confidence bounds. Three of the exponentiated coefficients are significantly
different from one (indicated by stars). Note that the exponentials of those
three parameters are all greater than one, indicating excitation at these time
lags. The most significant coefficient is one time step, or about 33 ms, back
in history, which can be reflective of bursting activity in this neuron. For
example, if this neuron fired about 33 ms in the past, it would have a
fourfold increase in firing probability at the next time step. To examine the
effect that this history dependence has on the spatial component model,
we plotted the estimate for the firing rate assuming no relevant recent
spiking activity, represented by the solid black curve in Figure 5D. The 95%
confidence bounds are shown as a gray region with vertical stripes. In a
comparison of this plot with Figure 5B, the major difference is that the peak
for the estimated firing rate is much lower after we take into consideration
the neuron’s firing history. This suggests that some of the firing intensity
when the animal was at the right corner is more properly attributed to
history-related effects such as bursting than purely to position effects.

The model fit shown in Figures 5B and 5D also suggests that the firing
activity increases more along the stem just prior to right turns (around 245
for the linearized position) than it does prior to left turns (around −245
for the linearized position). However, this difference in firing rate is not
significant at the 95% confidence level, suggesting that it would be difficult
to infer the next turn direction from the firing activity of this neuron alone.

Figures 6C and 6D show the KS and ACF plots for the same neuron using
the fit for the history-dependent model. Figure 6C shows that adding the
simple history component in model 2 improves the model fit to the point
that it passes the KS test. The ACF plot at the first 20 lags constructed for
model 2 is shown in Figure 6D; the structure at small lags that was present
in Figure 6B is eliminated, and almost all the points fall within the 95%
confidence bounds.

Over the full ensemble of 47 neurons, we found that, similar to the
encoding results shown in Figure 5, the firing intensity varied as a function
of the linearized location for each of the neurons. By visual inspection,
we found that the CIF for between two-fifths and one-half of the neurons
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3322 Y. Huang et al.

displayed multiple peaks along the linearized maze under both the Poisson
model and the history-dependent spiking model. The rest of the neurons
had a single narrow peak at one particular location, suggesting that these
neurons are narrowly tuned to position. However, few of the neurons
displayed significant differential firing between left and right turns when
the animal was at the stem of the T- maze.

We also carried out goodness-of-fit analyses for the firing activity of each
neuron in the ensemble. Overall, 19 of the 47 neurons were well fit by the
Poisson model as measured by the KS test. Under the history-dependent
model, the number of neurons that were well fit improved to 29 out of the 47.
For the neurons whose firing activities modeled by inhomogeneous Poisson
failed the KS test, most of them showed clear structure in their ACF plots.
That structure was eliminated or reduced once a simple history component
was added to the model. This suggests that these neurons have history-
dependent firing properties that must be modeled to properly describe the
observed spiking patterns.

5.2 Decoding Results. In order to decode the position of the animal
from the firing activity of an ensemble of neurons, we calculated the pos-
terior density of the animal’s position along the linearized T-maze given
the past spiking activity of the entire ensemble, at each time step, for the
duration of the experiment. The decoding results from the empirical state
model (see section 4) and history-dependent encoding model for a minute-
long segment of the experiment are shown in Figure 7. Figure 7A shows
the posterior distribution for the position of the animal at four time steps,
with each frame coming from distinct passes through the maze. The hori-
zontal black line shows the true position of the animal, and the curve is the
estimated posterior density at that time step, with the black dot being the
MAP estimator for the location of the animal. The 95% confidence region is
shown in light gray. We can see that in all four frames, the MAP estimate
is close to the true position of the animal, and the 95% confidence interval
for the true position of the animal is narrow. We also found that the poste-
rior distribution is highly nongaussian, that is, asymmetric in general and
often multimodal. This can be partly attributed to the discontinuity at the
connection point of the T-maze, as well as the fact that the middle stem of
the maze was split according to the animal’s next turn direction during the
linearization process (see section 3.1). Bimodal distributions often occurred
when the animal was traveling up the stem and approaching the decision
point.

Figure 7B shows the decoding results in one dimension by comparing the
true and estimated linearized positions as a function of time. Here, the con-
tinuous dark gray curve represents the actual trajectory of the rat along the
linearized track, while the discontinuous black points are the MAP estima-
tor and the light gray region is the 95% confidence interval at each time step.
The estimate tracks the true position closely, and the confidence interval
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Decoding Movement Trajectories 3323

Figure 7: Decoding results. (A) Each panel shows a frame for the posterior
distribution of the animal’s position at a certain time step in our experiment.
The horizontal line represents the true position of the animal, and the black dot
represents the predicted position of the animal, with gray being 95% confidence
bounds for the estimate. (B) The plot of the linearized position versus time
for 1 minute in our experiment. The continuous dark gray path represents the
actual position of the animal, and the discontinuous black points represent
the predicted position of the animal, with light gray being 95% confidence
bounds for the estimate. The estimated positions in black almost overlap the true
positions in dark gray. (C) Actual and predicted position with 95% confidence
bounds of the animal, mapped back to the original T-maze.
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3324 Y. Huang et al.

Table 1: Summary Statistics for Decoding Results from Four Different Models.

Coverage
Conditional Intensity Model State Model Probability of 95% CI RMSE (cm)

Equation 3.1 Random walk 62.76% 7.69
without history component Empirical 82.08 5.58

Equation 3.2 Random walk 61.26 8.17
with history component Empirical 83.10 5.71

covers the true position most of the time. In Figure 7C, the decoding results
for the four chosen frames displayed in Figure 7A are mapped back to our
original T-maze. The dark gray dot represents the true position of the ani-
mal; the black dot and the light gray interval, derived by mapping the MAP
estimator and its 95% confidence interval in 1D back to 2D, respectively,
show the estimated location of the animal in the original track with 95%
confidence region. At each time step, we computed an estimate of the rat’s
actual position by mapping the linearized track estimate back onto the ac-
tual track. By piecing together individual frames of this sort, we constructed
a 2D decoding movie that is available online in the Supplemental Materials
for this article on the Neural Computation Web site.

We carried out this decoding analysis for the full length of experiment
under four different models, and the results are summarized in Table 1.
We considered both the Poisson and the history-dependent observation
models and two different state models, the adapted random walk model
and the empirical state model derived from local polynomial regression
(see section 4).

From Table 1, we can see that although the firing history greatly improved
the goodness of fit to the data in the encoding analysis, it does not have a
major impact on the decoding results in terms of either the coverage proba-
bility or the mean squared error. However, using the empirical state model
does improve the estimation accuracy, since it uses statistical information
about the animal’s likely movement at each time step. It is clear from the re-
constructions based on the random walk model that even without the infor-
mation afforded by the empirical state model, the neural ensemble contains
sufficient information to accurately decode the rat’s position and intended
movement direction. For the empirical state models, the RMSE in 2D is less
than 6 cm, which is less than half the body length of the animal (about 15 cm).

This decoding framework can also be used to predict the animal’s next
turn decision. When the animal is at the stem of the T-maze, the posterior
density is likely to be bimodal, with separate modes providing the condi-
tional probabilities for the animal to turn left or right, given the ensemble
spiking activity. As the animal approaches the decision point, if the probabil-
ity under one of the modes is greater than that under the other, we can pre-
dict that the animal will turn to the corresponding direction. One example is
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Decoding Movement Trajectories 3325

Figure 8: Multimodality of the posterior. Posterior density at four consecutive
time steps as the animal ran up the stem of the T-maze in one trial. Model 2
was used for each of the neurons in the ensemble to construct the observation
model, and the random walk state model was used. The vertical line in each
frame shows the true position of the animal in 1D. The curve represents the
posterior distribution of the animal, with its mode highlighted in black, being
our predicted position of the animal. The gray shows the 95% confidence interval
for the predicted position.

shown in Figure 8. The posterior density splits into two modes as the animal
moves up the stem toward the decision point (from 0 toward 245 or −245 in
1D), with each side representing the same spatial location but different fu-
ture turn directions. The posterior density is much higher in the region corre-
sponding to a right turn than it is in the region corresponding to a left turn. In
this case, we are much more certain that the animal will choose to turn right
at the next decision point. As the animal nears the decision point, the left side
of the modes dies off, and we are increasingly confident that the animal will
eventually turn right. In the last frame of Figure 8, since the right mode con-
tains the whole of the 95% CI, we can predict with over 95% confidence the
next turn direction for the animal at that time step, during which the true po-
sition of the animal is just over halfway up the stem. Another example is
illustrated in Figure 7C(4). As the animal travels up the stem approaching
the decision point, we can predict, using the posterior distribution shown
in Figure 7A(4), that the animal will make a right turn with over 99%
confidence.

For all four combinations of state and observation models, we correctly
predicted 66 of 69 turns. All three of these errors occurred on right turns
that were predicted as left turns. One of the trials in which the algorithm
incorrectly predicted the turn was the last trial of the experiment; the other
two were trials for which the rat also made a behavioral error—a consecutive
right turn after the previous trial. In these cases, the decoding algorithm
correctly predicted the direction the animal should have chosen according
to the task rather than the direction where the animal actually went. This
could occur if the ensemble were correctly coding for features of the task
that would allow it to choose the proper direction, but the rat did not act
properly on this information, or if the ensemble were retrospectively coding
where the animal had been rather than where it was going (Ferbinteanu &
Shapiro, 2003).
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3326 Y. Huang et al.

Table 2: Summary Statistics for Decoding Results for the Testing Data Set.

Coverage
Conditional Intensity Model State Model Probability of 95% CI RMSE (cm)

Equation 1, Random walk 60.47% 11.15
without history component Empirical 82.46 6.76

Equation 2, Random walk 58.96 11.99
with history component Empirical 81.32 7.45

We carried out cross-validation by partitioning the recorded data into
two equal-length halves. The first half was used as the training set to fit
the neural models, and the second half was used as a test set to recon-
struct the movement trajectories. The cross-validated decoding results are
summarized in Table 2.

Comparing Table 2 with Table 1, there is not a very big change for the
coverage probability of the four models. The corresponding RMSE does
increase slightly, but this may also be due to the decrease in sample size,
since the training and test set consist of only half of the original data. In
any case, it is clear that overfitting to the data is minimal. For the empirical
state models, the RMSE still remains smaller than half of the body length
of the animal.

6 Discussion

Using a simple model for the place-specific differential firing of these neu-
rons, we were able to characterize the firing properties of each neuron in
the ensemble, reconstruct the animal’s trajectory through its environment,
and predict future behaviors.

We started by simplifying the problem both conceptually and compu-
tationally by linearizing the animal’s position into a 1D vector, focusing
our interest on the animal’s distance along the narrow track. We mapped
the rat’s movement trajectory at all locations (excluding only the resting
area outside of the track) from 2D to 1D. Most place cell analyses exclude
spiking data collected when the animal’s movement falls below a specific
speed threshold since this activity may be associated with activities apart
from spatial exploration (Buzsáki, 1986; Lee et al., 2006). However, for this
analysis, we sought to use all of the spiking data that provided informa-
tion about the animal’s location, including data at the corner of the T-maze
where the feeding wells are located. These data are still informative about
position, and we can maintain better estimates of the animal’s position by
including all of the observed data.

To address how information about future turn decisions is represented
by this ensemble, we mapped the middle stem of the T-maze to different
regions on the linearized track according to the animal’s next turn decision.
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Decoding Movement Trajectories 3327

In the encoding stage, we constructed and fit MLEs for conditional intensity
models of each of the neurons along the linearized maze. Differential
firing based on the direction of the next turn decision can be identified
by comparing the fit of the intensity model over the linearized region
corresponding to left turns (−245 to 0) to that corresponding to right turns
(0 to 245). For the decoding stage, it is more natural to construct state
models that describe the rat’s movements for the linearized track, and the
posterior distribution of the animal’s distance along the track can be more
efficiently computed under this 1D framework than in 2D. Linearization
enables us to predict the animal’s full movement trajectory and next turn
direction at a high level of accuracy.

The linearization procedure described in this article is specific to the
T-maze topology but can be easily expanded to arbitrary linear mazes.
Random walks can be generalized by constructing gaussian models on the
distance the rat moves in a particular direction at a single time step and as-
signing equal probability to each point in the maze at the resulting distance
and direction. For example, if the rat travels up a stem that branches into
three different choice paths in the original 2D maze, the generalized ran-
dom walk model will define the probability that the animal passes through
the branch point based on the gaussian distribution and assign equal prob-
ability to each of the three directions. More general state models can also
be constructed by defining a distribution on the current state given the
previous one, p(xk | xk−1).

After we linearized the maze, we proposed two models to characterize
the firing activity of each neuron along the linearized T-maze. The first
is a Poisson model that relates the firing rate of the neuron to the spatial
location of the animal using a cardinal spline. This simple model was able
to capture the statistical structure in the spiking activity of 19 of 47 neurons
(about 40%), based on the KS tests. For those that failed the KS tests, the
ACF plot for their transformed ISIs demonstrated correlated structure at
small lags, potentially indicating history-dependent firing activity. Thus,
in the second model, we incorporated a simple history component. Under
this history-dependent model, the firing activity of 29 neurons (over 60%)
passed the KS tests, and the correlation structure originally shown in the
ACF plots of many of the neurons was reduced or eliminated. This suggests
that firing history is an essential component necessary to accurately model
this spiking activity.

Even under the conditional intensity models with simple history
dependence, over a third of the neurons (17 of 47) did not pass the KS test
and retained a significant correlation structure between the rescaled ISIs,
suggesting that the coarse history component of this model could not fully
capture the true dependence structure. This model could be improved
by incorporating a more sophisticated history component. This can be
achieved in several ways. Binning the spiking activity at finer time scales
would allow us to capture more structure in the history dependence of
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these neurons, especially at small time intervals after a spike. Alternately,
renewal-type models of history dependence that relate the firing intensity
to the time since the last spike could also be constructed. Additionally,
this history-dependent model made a simplification by assuming that the
history covariates are independent of the spatial firing properties. Known
phenomena such as theta precession suggest that dependencies between
spike times could be place specific.

However, the decoding results shown in Table 1 suggest that neither the
estimation accuracy for the position of the animal nor the coverage proba-
bility of the 95% confidence interval is greatly improved by using the model
that incorporates covariates related to the past firing history. Although the
simple Poisson model does not fully capture the statistical structure of
each neuron’s firing activity, it has captured the spatial information in the
ensemble spiking very well. For this reason, we do not expect significant
improvement in the decoding results using an encoding model with a finer
history component. A better model of history dependence will, however,
help us better understand the biophysical properties of these neurons.

Next, we examined the estimated conditional intensity function for in-
dividual neurons in the ensemble under both the Poisson model and the
history-dependent model. We found that many of the neurons show narrow
tuning of position, since a number of individual cells contain pertinent in-
formation for the location of the animal. To examine how the information of
future turn direction is encoded over the full ensemble, a two-way ANOVA
analysis (Wood et al., 2000) was performed comparing spike activity as a
function of location and turn direction. The results suggested that only 13 of
the 47 neurons show significant differential firing preceding different turn
directions. Physiologically this suggests that a small subpopulation of these
neurons contains the preponderance of information about future decisions.

The errors in predicting the next turn direction tended to occur when
the animal made a behavioral mistake in the alternation task by turning to
the same direction as in the previous loop; in other words, in these cases,
the decoding framework was predicting the direction to which the animal
should go instead of where it actually went. One possible explanation for
this observation is that these neurons may be retrospectively coding the
rat’s past movement trajectory rather than predicting its future behavioral
decisions. However, because the movement task required the rat to alternate
between left and right turns, we cannot disambiguate between retrospective
coding and prospective coding in this experiment. One approach to this
problem would be to examine an alternative movement task or alternatively
designed mazes that would enable us to distinguish between the influence
of the past and future movement trajectories (Ferbinteanu & Shapiro, 2003;
Shapiro & Ferbinteanu 2006; Fleischer, Gally, Edelman, & Krichmar, 2007).

Recall that we predicted the animal’s next turn direction by calculating
the full posterior distribution of the animal’s position along the linearized
track. When the animal was going up the middle stem of the T-maze, the
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posterior was often bimodal, with one of the two modes dying off as the
animal approached the decision point, suggesting more and more certainty
that the animal would turn in the direction of the mode that persists. Overall,
the posterior distribution over the linearized track was observed to be
highly nongaussian and often multimodal. This is an expected outcome
of using a state model that allows the rat to move in any direction at the
decision points. As a direct result, the posterior distribution for the animal’s
position appears multimodal with multiple modes whenever it approaches
the connection point at a linearized position of 0 and ±753.

By calculating the exact posterior distribution at each time step and
using the MAP as our estimate for the animal’s true position, the RMSE
for our tracking across the whole experiment is less than 6 cm under the
empirical state model and about 8 cm under the random walk model (the
body length of the animal is about 15 cm). The coverage probability falls
short of the expected 95%, suggesting that this framework has captured
much, but not all, of the spatial information contained in this ensemble.
Further improvements in the encoding model might lead to more accurate
decoding. For example, we could incorporate other factors into the encoding
model such as the phase of oscillations in the EEG in the theta band (Skaggs,
McNaughton, Wilson, & Barnes, 1996; Jensen & Lisman, 2000).

It is unlikely that the accuracy of the decoding results is related to over-
fitting in the neural spiking models, since the number of model parameters
fit is very small compared to the number of time points at which the
movement trajectory was reconstructed. To demonstrate that this decoding
analysis generalizes to unobserved data, we performed a cross-validation
analysis, which led to comparable decoding results to the analysis using
the full data set for model fitting. This suggests that the conditional
intensity models were not just capturing actual structure and not simple
trial-by-trial fluctuations in the spiking data, that is, the models describe
the actual relationship between firing and position rather than the noise.

There are several possible research areas to be further explored. One
future direction is to compare the decoding results from this algorithm
with those from other decoding paradigms for the T-maze, either under our
linearization framework or directly in 2D. Approximate gaussian filters are
common tools for efficient computation of the posterior distribution. When
the posterior is assumed to be gaussian, a recursive expression for the mean
and variance of the posterior can often be derived analytically. This could
lead to a simplification of the decoding procedure described here, since
such an algorithm needs only to update the mean and variance according
to the explicit formula. However, it is not trivial to construct a gaussian
filter for this task. As we discussed before, the posterior distribution for the
animal’s position is often multimodal along the linearized track due to the
figure eight topology of the maze. Fundamentally, the gaussian distribution
is defined on the real line. Whether there is an appropriate way to impose
this structure over the figure eight topology of this task is unclear.
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Particle filters offer another alternative to the numerical computations
of the posterior distribution that underlie this decoding framework (Wang,
Paiva, Principe, & Sanchez, 2007; Brockwell, Rojas, & Kass, 2004; Kelly
& Lee, 2004; Eden, Frank, Barbieri, & Brown, 2002; Doucet, de Freitas, &
Gordon, 2001; Doucet, Godsill, & Andrieu, 2000). The questions of when
such particle filters are more computationally efficient and how many par-
ticles are required for accurate decoding for specific decoding problems
are still unanswered. By linearizing the track and computing the posterior
distribution numerically, we have a ground truth to which we can compare
different particle filtering algorithms in terms of accuracy and computa-
tional efficiency. Ergün, Barbieri, Eden, Wilson, and Brown (2007) found
through simulation that the commonly used bootstrap particle filter could
be inefficient when dealing with point process observations, since the pos-
terior density could jump instantaneously when a spike occurs. A future
analysis focused on applying these methods to this data set and comparing
the results to the ones presented here could help elucidate these issues.

These methods can also be compared to other decoding algorithms de-
veloped directly in 2D (Johnson & Redish, 2007). For decoding paradigms
designed directly in the original 2D maze, accurate state models that cap-
ture the structure of this T-maze task are more difficult to construct. One
issue is whether the state model should allow the animal to move outside
the confines of the maze. If there is a possibility for the animal to move out-
side and the encoding model is constructed using only spiking data along
the track (usually the case), the model will be incorrect, and the posterior
density will inappropriately increase in regions outside the track during
nonspiking periods. Therefore, such an algorithm will inappropriately in-
corporate information coming from nonspike times. On the other hand, the
problem of defining a state model that confines the animal to the maze and
has appropriate probability distributions for its movements through the
maze is nontrivial. It is also more challenging to construct a conditional in-
tensity model in 2D with great accuracy. Because of the maze structure, it is
not proper to assume a gaussian model for the CIF; at the same time, spline-
based estimation algorithms that use flexible functions to characterize the
place field are much more difficult to express in 2D than in 1D.

The focus of this article has been to develop a point process modeling
and decoding paradigm and illustrate its application to a small data set
from the CA1 region of rat hippocampus. Ultimately we would like to
carry out large-scale analysis across different animals within the same
regions of the brain using these methods. As a direct extension to this
experiment, it is of great interest to explore how prediction accuracy, as
well as confidence of prediction, varies as a function of distance or time
preceding the decision point. The data set used to illustrate this application
is too small to draw strong conclusions, but similar analyses on larger data
sets will allow us to quantify prediction accuracy as a function of time prior
to the decision. Also, this would allow us to investigate commonalities
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and differences in the ensemble coding properties of hippocampal neurons
across individual animals and draw general conclusions about the coding
features of the brain. This will also allow us to study how the results
vary as the ensemble size changes in order to understand the information
content in subpopulations of these neurons.

In summary, this work provides an important first step toward under-
standing how the brain encodes information about its environment and
uses that information to make behavioral decisions. We proposed a decod-
ing paradigm for a T-maze topology, which in principle can be generated to
a number of any linear maze structures. Because of the decrease in dimen-
sionality of the problem, analytical methods appropriate for linear track
experiments or open field environments can be carried out in the 2D maze
topology as well. This approach offers a powerful new methodology to
study how this spatial and context-dependent information is encoded by
neural firing patterns across a variety of environments and experimental
paradigms.
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Buzsáki, G. (1986). Hippocampal sharp waves: Their origin and significance. Brain
Res., 398(2), 242–252.

Casella, G., & Berger, R. L. (2001). Statistical inference. Pacific Grove, CA: Duxbury
Press.

Cox, D. R. (1975). A note on data-splitting for the evaluation of significance levels.
Biometrika, 62(2), 441–445.

Cox, D. R., & Isham, V. (1980). Point processes. New York: Chapman and Hall.
Daley, D., & Vere-Jones, D. (2003). An introduction to the theory of point processes. New

York: Springer-Verlag.
Davis, P. J., & Rabinowitz P. (1984). Methods of numerical integration. New York:

Academic Press.
Doucet, A., de Freitas, J. F. G., & Gordon, N. (2001). Introduction to sequential Monte

Carlo methods, In A. Doucet, J. F. G. de Freitas & N. J. Gordon (Eds.), Sequential
Monte Carlo methods in practice. New York: Springer-Verlag.

Doucet, A., Godsill, S., & Andrieu, C. (2000). On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10, 197–208.

Eden, U. T., Frank, L. M., Barbieri, R., & Brown, E. N. (2002). Particle filtering algorithms
for neural decoding and adaptive estimation of receptive field plasticity, Paper presented
at the Annual Meeting of Computational Neuroscience, Chicago.

Eden, U. T., Frank, L. M., Barbieri, R., Solo, V., & Brown, E. N. (2004). Dynamic anal-
ysis of neural encoding by point process adaptive filtering. Neuron Computation,
16, 971–998.

Ergün, A., Barbieri, R., Eden, U. T., Wilson, M. A., & Brown, E. N. (2007). Construction
of point process adaptive filter algorithms for neural systems using sequential
Monte Carlo methods. IEEE Transactions on Biomedical Engineering, 54(3), 419–428.

Evans, M., & Swartz, T. (2000). Approximating integrals via Monte Carlo and deterministic
methods. New York: Oxford University Press.

Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London:
Chapman and Hall/CRC.

Ferbinteanu, J., & Shapiro, M. L. (2003). Prospective and retrospective memory cod-
ing in the hippocampus. Neuron, 40, 1227–1239.

Fleischer, J. G., Gally, J. A., Edelman, G. M., & Krichmar, J. L. (2007). Retrospec-
tive and prospective responses arising in a modeled hippocampus during maze
navigation by a brain-based device. PNAS, 104(9), 3556–3561.

Frank, L. M., Brown, E. N., & Wilson, M. (2000). Trajectory encoding in the hip-
pocampus and entorhinal cortex. Neuron, 27, 169–178.

Frank, L. M., Eden, U. T., Solo, V., Wilson, M. A., & Brown, E. N. (2002). Contrasting
patterns of receptive field plasticity in the hippocampus and the entorhinal cortex:
An adaptive filtering approach. Journal of Neuroscience, 22(9), 3817–3830.

Genz, A., & Kass, R. E. (1991). An application of subregion adaptive numerical
integration to a Bayesian inference problem. In E. Keramidas (Ed.), Computing
science and statistics: Proceedings of the 23rd Symposium on the Interface (pp. 441–444).
Fairfax Station, VA: Interface Foundation of North America.

Genz, A., & Kass, R. E. (1997). Subregion-adaptive integration of functions having a
dominant peak. Journal of Computational and Graphical Statistics, 6(1), 92–111.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/21/12/3305/830204/neco.2009.10-08-893.pdf by M
C

G
ILL U

N
IVER

SITY user on 19 D
ecem

ber 2023



Decoding Movement Trajectories 3333

Griffin, A. L., Eichenbaum, H., & Hasselmo, M. E. (2007). Spatial representa-
tions of hippocampal CA1 neurons are modulated by behavioral context in
a hippocampus-dependent memory task. Journal of Neuroscience, 27(9), 2416–
2423.

Hasselmo, M. E., & Eichenbaum, H. (2005). Hippocampal mechanisms for the
context-dependent retrieval of episodes. Neural Networks, 18, 1172–1190.

Hearn, D., & Baker, M. P. (1996). Computer graphics, C version. Upper Saddle River,
NJ: Prentice Hall.

Jensen, O., & Lisman, J. E. (2000). Position reconstruction from an ensemble of
hippocampal place cells: Contribution of theta phase coding. Journal of Neuro-
physiology, 83(5), 2602–2609.

Johnson, A., & Kotz, S. (1970). Distributions in statistics: Continuous univariate
distributions—2. New York: Wiley.

Johnson, A., & Redish, A. D. (2007). Neural ensembles in CA3 transiently encode
paths forward of the animal at a decision point. Journal of Neuroscience, 27(45),
12176–12189.

Kass, R. E., Ventura, V., & Cai, C. (2003). Statistical smoothing of neuronal data.
NETWORK: Computation in Neural Systems, 14, 5–15.

Kelly, R., & Lee, T. S. (2004). Decoding visual input from V1 neuronal activity with
particle filtering. Neurocomputing, 58–60, 849–855.

Lee, I., Griffin, A. L., Zilli, E. A., Eichenbaum, H., & Hasselmo, M. E. (2006). Gradual
translocation of spatial correlates of neuronal firing in the hippocampus toward
prospective reward locations. Neuron, 51(5), 639–650.

Lee, J. M. (2008). Introduction to topological manifolds. New York: Springer-Verlag.
Lehmann, E. L. (1999). Elements of large-sample theory. New York: Springer-Verlag.
McCullagh, P., & Nelder, J. A. (1989). Generalized linear models. London: Chapman

and Hall.
Mosteller, F., & Tukey, J. W. (1977). Data analysis and regression: A second course in

statistics. Reading, MA: Addison-Wesley.
Ogata, Y. (1988). Statistical models for earthquake occurrences and residual analysis

for point processes. Journal of American Statistical Association, 83, 9–27.
O’Keefe, J. (1979). A review of the hippocampal place cells. Prog. Neurobiol., 13,

419–439.
O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary

evidence from unit activity in the freely-moving rat. Brain Res., 34(1), 171–175.
Papangelou, F. (1972). Integrability of expected increments of point processes and a

related random change of scale. Trans. Amer. Math. Soc., 165, 483–506.
Shapiro, M. L., & Ferbinteanu, J. (2006). Relative spike timing in pairs of hippocampal

neurons distinguishes the beginning and end of journeys. PNAS, 103(11), 4287–
4292.

Shumway, R. H. (1988). Applied statistical time series analysis. Upper Saddle River, NJ:
Prentice Hall.

Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta
phase precession in hippocampal neuronal populations and the compression of
temporal sequences. Hippocampus, 6, 149–172.

Smith, D. M., & Mizumori, S. J. Y. (2006). Hippocampal place cells, context, and
episodic memory. Hippocampus, 16, 716–729.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/21/12/3305/830204/neco.2009.10-08-893.pdf by M
C

G
ILL U

N
IVER

SITY user on 19 D
ecem

ber 2023



3334 Y. Huang et al.

Truccolo, W., Eden, U. T., Fellows, M. R., Donoghue, J. P., & Brown, E. N. (2005). A
point process framework for relating neural spiking activity to spiking history,
neural ensemble, and extrinsic covariate effects. Journal of Neuroscience, 93, 1074–
1089.

Wang, Y., Paiva, A. R. C., Principe, J. C., & Sanchez, J. C. (2007). A Monte Carlo sequen-
tial estimation of point process optimum filtering for brain machine interfaces. In
Proceedings of the International Joint Conference on Neural Networks (pp. 2250–2255)
Los Alamitos, CA: IEEE.

Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble
code for space. Science, 261, 1055–1058.

Wood, E. R., Dudchenko, P. A., Robitsek, R. J., & Eichenbaum, H. (2000). Hippocam-
pal neurons encode information about different types of memory episodes oc-
curring in the same location. Neuron, 27, 623–633.

Zhang, K., Ginzburg, I., McNaughton, B. L., Sejnowski, T. J. (1998). Interpreting neu-
ronal population activity by reconstruction: Unified framework with application
to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.

Received October 23, 2008; accepted April 7, 2009.

D
ow

nloaded from
 http://direct.m

it.edu/neco/article-pdf/21/12/3305/830204/neco.2009.10-08-893.pdf by M
C

G
ILL U

N
IVER

SITY user on 19 D
ecem

ber 2023


