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a b s t r a c t

Neurophysiological data reveals intrinsic cellular properties that suggest how entorhinal cortical neurons
could code memory by the phase of their firing. Potential cellular mechanisms for this phase coding
in models of entorhinal function are reviewed. This mechanism for phase coding provides a substrate
for modeling the responses of entorhinal grid cells, as well as the replay of neural spiking activity
during waking and sleep. Efforts to implement these abstract models in more detailed biophysical
compartmental simulations raise specific issues that could be addressed in larger scale populationmodels
incorporating mechanisms of inhibition.

© 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The parahippocampal cortices play an important role in
memory function. In humans, the severe anterograde amnesia
seen in patient HM was associated with bilateral removal of
both the hippocampus and the entire entorhinal cortex (Corkin,
Amaral, Gonzalez, Johnson, & Hyman, 1997). In monkeys, lesions
of parahippocampal cortices without damage to the hippocampus
cause severememory impairments on delayedmatching to sample
tasks in both the visual and tactile modalities (Suzuki, Zola-
Morgan, Squire, & Amaral, 1993; Zola-Morgan, Squire, Amaral, &
Suzuki, 1989), and anterograde memory impairments caused by
damage to the hippocampus are increased when accompanied
by damage to parahippocampal cortices (Zola-Morgan, Squire,
Clower, & Rempel, 1993). Damage to the entorhinal cortex alone
causes a transient impairment in delayed match to sample at long
delays (Leonard, Amaral, Squire, & Zola-Morgan, 1995), suggesting
that it normally plays a crucial role in this task until other
structures can compensate. In rats, lesions of the entorhinal cortex
impair spatial memory in the water maze (Steffenach, Witter,
Moser, & Moser, 2005) and in the 8-arm radial maze (Otto, Wolf,
& Walsh, 1997) and cause impairments of memory for odors in
delayed matching tasks (Otto & Eichenbaum, 1992; Staubli, Le, &
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Lynch, 1995; Young, Otto, Fox, & Eichenbaum, 1997). Note that a
large number of these memory impairments involve impairments
in delayed matching to sample tasks with delays on the order
of seconds. This indicates a role for entorhinal cortex in the
maintenance of memory representations.

2. Cellular mechanisms in entorhinal cortex

How do local circuits in the entorhinal cortex mediate this
role in memory function? The connectivity of entorhinal cortex is
summarized in Fig. 1A, showing that input from other neocortical
areas arrives in the superficial layer II (Witter & Moser, 2006;
Witter et al., 2000a; Witter, Wouterlood, Naber, & Van Haeften,
2000b). The recurrent connectivity between neurons in layer
III and V appears to be stronger than in layer II (Dhillon &
Jones, 2000), but recent studies have demonstrated excitatory
recurrent connectivity in layer II as well (Kumar, Jin, Buckmaster,
& Huguenard, 2007). There are strong interactions with both the
hippocampus and the subiculum. Layer II projects to the dentate
gyrus and region CA3, whereas layer III projects to region CA1 and
subiculum in the rat (Witter, Griffioen, Jorritsma-Byham,&Krijnen,
1988), and layer V receives feedback from the hippocampal
formation and subiculum (though layers II and III also receive input
from subicular subregions).
Here we review data suggesting how cellular and circuit

mechanisms might allow the relative phase of neural firing to
code memories. These intrinsic cellular mechanisms have been
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A. Entorhinal circuits
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Fig. 1. A. Summary of the circuitry of medial entorhinal cortex. Input from other
cortical areas (Cortex) and subiculum (sub) enters in layer II and III. Layer II contains
both stellate and pyramidal cells, and these cells send recurrent connections to
layer II and afferent connections to dentate gyrus and CA3. Layer III has recurrent
connections to layer II and III and afferent connections to CA1 and subiculum. Region
CA1 and subiculum send return connections to layer V which projects to other
cortical regions. B.Whole cell patch recording in slice preparations shows that layer
II entorhinal stellate cells generate subthresholdmembrane potential oscillations in
between the generation of action potentials (Giocomo & Hasselmo, 2008b). Blowup
focuses on subthreshold oscillations. C. Whole cell patch recording in the presence
of cholinergic or mGlulr agonists shows that layer III and V pyramidal cells exhibit
persistent spiking that is maintained after the termination of a square pulse current
injection (Yoshida et al., 2008).

demonstrated using intracellular sharp electrode or whole cell
patch recording in entorhinal cortex neurons. Fig. 1B and C
illustrate important intrinsic properties of entorhinal neurons that
could contribute to the phase coding of memory.

2.1. Membrane potential oscillations

Entorhinal layer II stellate cells show subthreshold mem-
brane potential oscillations when depolarized near firing thresh-
old (Alonso & Klink, 1993; Alonso & Llinas, 1989; Giocomo, Zilli,
Fransen, & Hasselmo, 2007). An example is shown in Fig. 1B (Gio-
como & Hasselmo, 2008b). These are small oscillations of a few
millivolts in amplitude that can influence the timing of action po-
tentials (Fransen, Alonso, Dickson, Magistretti, & Hasselmo, 2004;
Pervouchine et al., 2006; Rotstein, Oppermann, White, & Kopell,
2006) and may contribute to network theta frequency oscilla-
tions (Acker, Kopell, & White, 2003; Alonso & Garcia-Austt, 1987;
Mitchell & Ranck, 1980). The frequency of membrane potential os-
cillations differs systematically along the dorsal to ventral axis of
the medial entorhinal cortex (Giocomo et al., 2007). The oscilla-
tions appear to be due to a hyperpolarization activated cation cur-
rent or h-current (Dickson et al., 2000), that differs in time con-
stant along thedorsal to ventral axis (Giocomo&Hasselmo, 2008b).
Membrane potential oscillations appear less frequently in layer II
or layer III pyramidal cells (Alonso & Klink, 1993), but are observed
in layer V pyramidal cells, where theymay be caused byM-current
(Yoshida & Alonso, 2007). The layer V membrane potential oscilla-
tions also show a gradient in frequency from dorsal to ventral me-
dial entorhinal cortex (Giocomo & Hasselmo, 2008a). Membrane
potential oscillations do not appear in neurons of the lateral en-
torhinal cortex (Tahvildari & Alonso, 2005).

2.2. Persistent spiking

In slices, pyramidal neurons in different layers of entorhinal
cortex demonstrate the capacity to display persistent spiking ac-
tivity after a depolarizing current injection or a period of repeti-
tive synaptic input (Egorov, Hamam, Fransen, Hasselmo, & Alonso,
2002; Fransén, Tahvildari, Egorov, Hasselmo, & Alonso, 2006; Klink
& Alonso, 1997; Tahvildari, Fransen, Alonso, & Hasselmo, 2007;
Yoshida, Fransen, & Hasselmo, 2008), as illustrated in Fig. 1C. Some
pyramidal neurons in layer II ofmedial entorhinal cortex showper-
sistent spiking, whereas others show spiking that self-terminates
over periods of many seconds (Klink & Alonso, 1997). Pyramidal
cells in layer III show stable persistent spiking that can last for two
minutes or more (Yoshida et al., 2008). Pyramidal neurons in deep
layers of entorhinal cortex canmaintain spiking at different graded
frequencies for many minutes (Egorov et al., 2002). The persistent
spiking appears to be due tomuscarinic ormetabotropic glutamate
activation of a calcium-sensitive non-specific cation current (Fran-
sén et al., 2006; Shalinsky,Magistretti,Ma, & Alonso, 2002; Yoshida
et al., 2008). This graded persistent firing could allow these neu-
rons to integrate synaptic input over extended periods. Persistent
firing has also been shown in layer III of lateral entorhinal cortex
(Tahvildari et al., 2007).
The mechanism of persistent spiking could code memories

either in terms of the graded magnitude of firing rate (Egorov
et al., 2002; Fransén et al., 2006), or in terms of the phase
of spiking relative to the phase of a stable baseline frequency
(Hasselmo, 2008a). Many models of cortex code memory in
the form of the firing rate of individual neurons. For example,
models of working memory based on recurrent connections code
the previous presence of a specific stimulus by inducing and
maintaining a different level of firing frequency in a population
of neurons (Amit & Brunel, 1997; Lisman, Fellous, & Wang, 1998;
Zipser, Kehoe, Littlewort, & Fuster, 1993). These types of models
can also code and maintain the location of a simulus over time by
maintaining a ‘‘bump’’ of activity in a set of neurons responding
selectively to a particular location (Miller, 2006; Miller & Wang,
2006; Samsonovich & McNaughton, 1997). In contrast, other
models have used phase to code the memory for a specific item.
For example, sequences of spiking at different phases have been
proposed to represent different items in a model of short term
memory (Jensen & Lisman, 1996a, 1998, 2005), and the spiking
phase arising from oscillatory interference has been proposed to
code spatial location for path integration (Burgess, 2008; Burgess,
Barry, & O’Keefe, 2007; O’Keefe & Burgess, 2005).
Here we focus on how the phase of rhythmic spiking activity

relative to a reference phase could code memory, due to intrinsic
cellular properties of neurons (Giocomo & Hasselmo, 2008a, 2009;
Giocomo et al., 2007; Hasselmo, 2008a) or network dynamics. The
mechanism can be used in models to encode the spatial location of
a rat (Burgess, 2008; Burgess et al., 2007; O’Keefe & Burgess, 2005),
or it could be extended to encode the spatial location of a stimulus,
themagnitude of a stimulus or the temporal duration of a stimulus.
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Fig. 2. Schematic representation of oscillations with different frequencies that
could be regulated by neuronal input. A. Higher frequency oscillation (f = 6 Hz).
B. Lower frequency oscillation (f = 4 Hz). C. Experimental data from different
populations of stellate cells recorded at different membrane potentials shows a
difference in mean oscillation frequencies (Giocomo & Hasselmo, 2008a).

3. Phase code for memory

The phase code of memory will first be illustrated in a
simple example using an abstract representation of oscillations.
These modelled oscillations can represent a range of different
physiological phenomena. They could represent subthreshold
membrane potential oscillations (MPO) arising from interactions
of voltage-dependent membrane currents within single neurons.
With a simple threshold function, trigonometric functions could
represent rhythmic persistent spiking activity with a stable firing
frequency regulated by calcium-sensitive membrane currents.
These oscillations could also represent network level oscillations
based on the interactions of sub-populations of stellate cells,
pyramidal cells and inhibitory interneurons.
Consider a single oscillationwith constant frequency over time:

V (t) = cos(2π ft). (1)

The number of cycles of the oscillation per unit time is
determined by the frequency f , and the time duration of one
cycle is the period T = 1/f . Examples of oscillations are shown
in Figs. 2–4. Note that the oscillations can also be described by
their instantaneous phase angle (the term ‘‘angle’’ is commonly
dropped). The instantaneous phase corresponds to the angle being
used at each point of time in the cosine function, as follows:

ϕ(t) = 2π ft. (2)

Thus, for frequency f = 1 and time t = 0.25, the phase
angle is ϕ(t) = π/2. Note that this description of instantaneous
phase differs from the initial phase ϕ(0) that would shift the entire
oscillation from the starting time, as in cos(2π ft + ϕ(0)).
The phase code described here focuses on the relative phase of

one oscillation versus a baseline oscillation. The frequency of the
baseline oscillation keeps a constant value f , as described by Eq.
(2) above.
The memory mechanism described here can encode a new

input through the influence of that input on the frequency of an
oscillation holding the memory, thereby causing the oscillation
holding the memory, labelled as ϕm(t) in Figs. 2 and 3 to
have a different relative phase. The instantaneous phase changes
constantly, but the relative phase difference caused by a memory
input can be quantified when compared to a reference phase. The
new input will cause a change in frequency of the oscillation at
different time points. The instantaneous phase ϕ(t) at each new
time step can be computed by adding the old phase angle at time
t to the change in phase angle for each time interval∆t . When the
frequency of an oscillation changes as a function of time f (t), then
A

B

Fig. 3. Plot of the phase of membrane potential oscillations in a single cell
cos(ϕm(t)) interactingwith the network theta rhythmoscillation cos(ϕ(t)). A. Input
h(t) with magnitude 1.0 and duration 1.25, causes a shift in the frequency and
phase of cos(ϕm(t)) relative to cos(ϕ(t)) that is proportional to the magnitude and
duration of input. Thus, the input associated with a prior item input can alter the
phase representation, providing memory for the item in the form of a shift in phase
that is maintained over time. B. Example of the shift in frequency and phase caused
by input h(t)with magnitude 0.2 and duration 2.0.

Fig. 4. The phase code of memory can be read out by spiking activity due to
interference between oscillations. The top row shows two oscillations that start
out in antiphase with each other. The depolarizing input h(t) to cos(ϕm(t)) causes
the frequency of the oscillation to increase and the phase to shift relative to the
reference oscillation cos(ϕ(t)). The sumof the oscillations then shifts from showing
destructive interference at the start to showing constructive interference. This
constructive interference brings the summed oscillation over threshold, generating
spiking activity.

the phase angle needs to be updated with different values of f (t)
for each time interval∆t , as follows:ϕ(t+∆t) = ϕ(t)+2π f (t)∆t .
Updated continuously, this results in the phase integrating the
function of frequency over time ϕ(t) =

∫ t
0 2π f (τ )dτ . For the

baseline oscillation with constant frequency f , this integration
simply yields the baseline phase ϕ(t) = 2π ft + ϕ(0).

4. Memory as phase angle

Neural oscillations in single neurons have the potential capacity
to hold memory for prior inputs in the form of the relative phase
angle of the oscillation. In the simplest example, the memory
being encoded would consist of some stimulus causing a shift in
the frequency of an oscillation for the period of time that the
stimulus is present. The change in frequency will shift the relative
phase angle compared to the baseline oscillation. Thus, the stored
memory takes the formof a difference in the phase angle of a neural
oscillation relative to a reference phase angle. The shift in phase
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angle will be proportional to the magnitude and duration of the
encoded input.
Experimental data from stellate cells shows differences in

the oscillation frequency observed in different individual cells
recorded at different membrane potentials in dorsal entorhinal
cortex (Giocomo & Hasselmo, 2008a), as summarized in Fig. 2.
This suggests that oscillation frequencies may change with
depolarization, though direct measures of changes in oscillation
frequency with depolarization in single neurons do not always
show clear frequency changes. The frequency is difficult to analyze
acrossmanymembrane potential values in single neurons, because
the amplitude of oscillations becomes small near resting potential,
and the oscillations are obscured when cells are depolarized
enough to generate spikes. In persistent spiking cells, additional
depolarizing or hyperpolarizing current injection will increase or
decrease the spiking frequency from the baseline persistent firing
frequency (Yoshida and Hasselmo, unpublished data).
A potential difficulty for implementing a phase codewithmem-

brane potential oscillations concerns the tendency for oscillations
within different parts of a single neuron to synchronize, as shown
in computational studies (Remme, Lengyel, & Gutkin, 2007). Pre-
vious models have proposed that the relative phase of two oscilla-
tions could differ if one is an intrinsic oscillation in the dendrites
of a neuron, and the other is a network oscillation altering the so-
maticmembrane potential (Burgess et al., 2007; Lengyel, Szatmary,
& Erdi, 2003; O’Keefe & Recce, 1993). As an alternative, persistent
spiking of different individual neurons with the same baseline fre-
quency could allow maintenance of separate phases (Hasselmo,
2008a), or the oscillation encoding the memory could also arise
from network dynamics within a population of neurons.
Consider a neuron holding memory for the magnitude and

duration of a previous movement. The shift in phase angle can
be induced by changing the frequency of the oscillation for a
period of time according to h(t), representing some sensory input
influencing frequency. For example, as shown in Fig. 3, imagine
there is no initial movement until time t = 3, when movement
occurs with magnitude 1 until time t = 4.25, at which time
movement stops. This input causes a shift in the frequency of the
oscillation that results in a shift in the phase of the oscillation as
follows:

ϕm(t +∆t) = ϕm(t)+ 2π(f + h(t))∆t. (3)

This difference can be seen in Fig. 3 when comparing the
phase ϕm of the oscillation holding the memory to the phase
ϕ of the baseline oscillation. Before the movement occurs, the
phase difference between the two oscillations is zero. During the
movement, the phase difference increases by 2πh(t)∆t , so that
at the end of the movement the phase difference is 2π(1)(1.25).
The total phase shift is proportional to the integral of h(t) over
the interval of input. In the absence of further input, this phase
shift persists in the network over all of the subsequent cycles of
oscillation.
The phase shift can integrate any function h(t)over any interval.

Another example is shown in the bottom of Fig. 3. In this case, h(t)
increases from zero to 0.2 for a period of 2 s, resulting in a phase
shift of 2π(0.2)(2) = 2π(0.4). This is visible as a shift in the peak
of ϕm to an earlier phase that precedes the peak of the baseline
oscillation by about 4/10 of a full cycle. Thus, the figure illustrates
howmemory of a previous input can bemaintained in the formof a
shift in the phase of one oscillation relative to a baseline oscillation.
By integrating the magnitude and duration of previous input,

the phase shifts described here encode a continuous representa-
tion of previous input and maintain this memory by holding the
phase (in the absence of further input). However, this leaves open
the problem of reading out the phase angle difference coding the
memory.
5. Interference provides memory read-out

The memory encoded by phase shift in the previous section
must be accessible for read-out. A potential mechanism for
reading out the difference in phase is through the interference of
oscillations (Burgess et al., 2007; O’Keefe & Recce, 1993). In the
example in Fig. 4, the input causes a difference between the phase
of the oscillation holding thememory and the phase of the baseline
oscillation. This can be read out in the formof interference between
these two oscillations.
As shown in Fig. 4, the sum of two oscillations that are out

of phase with each other will undergo destructive interference
so that the summed oscillation is a flat line. However, if one of
the oscillations is shifted by input of magnitude 0.2 for 2 time
steps, the integral of the shift is 0.4. Thus, the phase has shifted
by about half a cycle. This brings the two oscillations closer in
phase with each other. In this case, the sum of the oscillations now
shows constructive interference, resulting in a large amplitude
oscillation. If we consider a neuron that spikes whenever the
oscillation crosses a threshold of 1.4, this results in regular spiking
that indicates that a previous input of a particular magnitude was
presented.
This read out specifically indicates the integral of prior input,

giving the same response for a magnitude of 0.8 for 0.5 time
steps or a magnitude of 0.1 for 4 time steps. In addition, it codes
magnitude in a repeating manner, responding the same for 0.4
and 1.4. However, the readout can be made more specific by
utilizing oscillations with different sensitivity to input that shifts
them by different amounts. For example, consider a second pair
of oscillations in which the input is scaled by 2/7. This second
pair of units will respond to 0.4 and 1.4 with 0.11 and 0.4,
thereby distinguishing the two states. The interaction of different
coding scales can effectively code very large ranges according to
the least common denominator of interactions (Gorchetchnikov &
Grossberg, 2007). Different scales could arise from the differences
in intrinsic frequency in neurons at different anatomical positions
in medial entorhinal cortex (Giocomo & Hasselmo, 2008a, 2008b,
2009; Giocomo et al., 2007) that may underlie differences along
the dorsal to ventral axis in the size and spacing of grid cell
firing fields as well as the size of place cell firing fields in the
hippocampus (Hasselmo, 2008b; Kjelstrup et al., 2008). This raises
the intriguing possibility that anatomical differences in intrinsic
frequencies in other structures such as prefrontal cortex and
piriform cortex could underlie differences in the scale of coding for
different behaviours (Hasselmo, 2008b).
This section described how a shift in phase of oscillations can

provide a memory for prior input, and shows how interference
between shifted phases can provide read-out of the prior memory.
This process could code memory for the temporal duration and
magnitude of a stimulus or stimulus feature. For example, neurons
responding to different stimulus features could create a phase code
for individual sample stimuli that would be maintained over a
delay period by maintenance of the relative phases of oscillations.
Alternately, this process could code memory for the velocity of

self-motion in an environment, providing a mechanism for path-
integration (Burgess, 2008; Burgess et al., 2007). Velocity can be
coded by head direction cells (Taube, Muller, & Ranck, 1990b)
combined with cells responding to speed of translational motion
(O’Keefe, Burgess, Donnett, Jeffery, &Maguire, 1998). Starting from
an initial relative phase, input coding the direction and speed of
movement will shift the phase of firing in proportion to velocity.
The shift in phase integrates velocity, so that at the end of the
movement, the relative phase codes the relative difference in
position between the starting location and the end location. The
interference of different oscillationswill show repeated patterns of
spiking dependent upon the movement. This phenomenon forms
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Fig. 5. Mechanism for interaction of persistent firing cells to cause grid cell firing.
A. Spiking activity over time of three different groups of persistent firing neurons.
Here, each group consists of three persistent spiking cells firing with a baseline
frequency of 3Hzwith different phases. Cells receive input fromheaddirection (HD)
cells with 0 degree preferred angle for Group 1, 120 degree angle for Group 2, and
240 degree angle for Group 3. Grid cell firing arises from the convergent spiking of
the three groups of persistent firing neurons.When all three persistent firing groups
fire in synchrony, the grid cell will fire (dots). B. Grid cell spiking (dots) occurs only
when all of the persistent firing neurons fire at the same phase, resulting in a typical
grid cell firing pattern. Gray line indicates rat trajectory from experimental data
(Hafting et al., 2005).

the basis for amodel of the grid cell responses of medial entorhinal
neurons (Burgess, 2008; Burgess et al., 2007; Giocomo et al., 2007;
Hasselmo, Giocomo, & Zilli, 2007). An example of how this phase
code can result in grid cell firing is shown in Fig. 5.

6. Alternate mechanisms for phase coding

There could bemany possiblemechanisms for themaintenance
of the phase code. The phase code could depend upon intrinsic
membrane potential oscillations (Giocomo & Hasselmo, 2008a;
Giocomo et al., 2007; Hasselmo et al., 2007), but the same
framework can be used to describe a phase code using stable
persistent spiking (Hasselmo, 2008a). An example using stable
persistent spiking is shown in Fig. 5. In this example, a population
of neurons all have the same baseline level of stable persistent
spiking. Within this population, different neurons receive input
coding the velocity of movement relative to different directions. In
Fig. 5A, the response of the network to movement in one direction
is shown, demonstrating how the velocity input systematically
shifts the phase of spiking of one group of cells relative to the
other groups. In Fig. 5B, the response of the circuit during random
movementswithin a circular open field environment is shown. The
relative phase shift caused by the different velocity signals cause
patterns of interference resulting in grid cell firing properties.
The pattern of activity represented by grid cells can be read out
as a purely spatial code by grid cell activation of spiking in a
population of hippocampal place cells, as shown in a number
of models (Gorchetchnikov & Grossberg, 2007; Hasselmo, 2008c;
Rolls, Stringer, & Elliot, 2006; Solstad, Moser, & Einevoll, 2006).
The same model could describe oscillatory dynamics involving

feedback interactions between excitatory neurons and inhibitory
cortical interneurons. Numerous studies have shown that circuits
of excitatory neurons interacting with inhibitory interneurons can
cause oscillatory dynamics at gamma frequency (Chow, White,
Ritt, & Kopell, 1998; White, Chow, Ritt, Soto-Trevino, & Kopell,
1998). More complex dynamical interactions can cause oscillatory
dynamics at theta frequency (Cutsuridis, Cobb, & Graham, 2008,
2009; Denham & Borisyuk, 2000; Kunec, Hasselmo, & Kopell,
2005; Pervouchine et al., 2006; Rotstein et al., 2005). Circuits
that generate synchronous rhythmic activity of neurons have the
potential for generating phasic firing of neurons at different phase
relationships. Different groups of neurons with the same internal
connectivity but lesser cross-connectivity could show different
phases of firing. If external depolarizing input causes even a small
magnitude linear shift in frequency of one oscillation, then this
will cause systematic shifts in relative phase of spiking in different
groups of neurons. In this case, the framework described here can
be used for coding memory in these types of networks.
One problem that confronts the models of grid cells based on

intrinsic mechanisms concerns the effect of phase noise. As seen
in Fig. 1B, membrane potential oscillations show high variability in
oscillation period, and persistent spiking activity shows variability
in spiking phase. Simulations with this level of variability show
a rapid loss of coding accuracy (Giocomo & Hasselmo, 2008a;
Welinder, Burak, & Fiete, 2008; Zilli, Yoshida, Tahvildari, Giocomo,
& Hasselmo, in review). However, these effects of noise could
be reduced by network interactions. For example, analysis of
the spike time response curves (STRC) in entorhinal stellate cells
shows that the h current results in excitatory synaptic potentials
causing phase shifts that drive neurons toward synchrony (Acker
et al., 2003; Pervouchine et al., 2006). Experimental data shows
that individual stellate cells receiving input from a dynamic
clamp replicating excitatory interactions with other stellate cells
will synchronize (Netoff, Acker, Bettencourt, & White, 2005a;
Netoff et al., 2005b). Thus, stellate cells firing rhythmically in
response to external input will shift into phase with each other
due to recurrent excitatory coupling. This synchronization on the
population level should be able to overcome the independent
variability of the intrinsic mechanisms for membrane potential
oscillations or persistent spiking. Simulations have demonstrated
that network dynamics can maintain synchrony despite noise
within individual neurons (Zilli and Hasselmo, unpublished work).
Thus, the grid cell firing properties of entorhinal cortex

could involve the interaction of different populations of neurons.
There are a number of different possible configurations. One
possible network configuration could involve an interaction of
persistent firing cells and cells showing membrane potential
oscillations. Persistent firing cells can change frequency with
depolarization and maintain activity without synaptic input.
Studies of synchronization due to membrane potential oscillations
commonly use a steady applied current to ensure a stable
background firing frequency (Acker et al., 2003; Rotstein et al.,
2006). However, excitatory recurrent connectivity sufficient to
maintain spiking activity would tend to drive the neurons to
higher frequencies. In contrast, intrinsic persistent spiking cells
in medial entorhinal cortex layer III (Yoshida et al., 2008) or
postsubiculum (Yoshida & Hasselmo, 2009) can maintain stable
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low frequency firing. This could then drive the stellate cells in
layer II that would have weak excitatory interactions sufficient
for synchronization but not strong enough to change the overall
frequency of the circuit (Acker et al., 2003; Netoff et al., 2005b;
Rotstein et al., 2006). A similar interaction could occur between
persistent spiking cells in layer III of entorhinal cortex and local
circuits in region CA1 that generate synchronization through
interactions of pyramidal cells, and two types of interneurons:
fast spiking cells (FS) and oriens-lacunosum-moleculare (OLM)
cells (Netoff et al., 2005b; Rotstein et al., 2005). These CA1
circuits could interact with entorhinal circuits because of the
topographic relationship between entorhinal projections to CA1
and the return projections from CA1 to deep layers of entorhinal
cortex (Tamamaki & Nojyo, 1995).
The cholinergic modulation of intrinsic properties could

influence the generation of oscillations. Cholinergic modulation
has been shown to enhance theta rhythm oscillations in the
hippocampus (Bland, 1986; Konopacki, MacIver, Bland, & Roth,
1987). On a single cell level, cholinergic modulation lowers the
resonance frequency of entorhinal stellate cells (Heys, Giocomo, &
Hasselmo, in review). By reducing neuronal intrinsic frequencies,
acetylcholine could cause an increase in the size and spacing of grid
cell firing fields observed in novel environments (Barry, Fleming,
Jeewajee, O’Keefe, & Burgess, 2008). Microdialysis shows increases
in cortical acetylcholine levels in novel environments (Acquas,
Wilson, & Fibiger, 1996).

7. Phase code substrate for episodic memory

The phase code of memory described here provides an effective
means of representing continuous changes in a range of different
dimensions, including spatial location, time and features of
stimuli (such as size, color, or stimulus motion). This phase
code could provide a substrate for encoding and retrieval of
complex spatiotemporal trajectories relevant to episodic memory
function (Hasselmo, 2008c; Hasselmo & Brandon, 2008), as well as
individual features of encountered items.
The circuit mediating episodic memory function (Hasselmo,

2008c; Hasselmo & Brandon, 2008) could involve an interaction
of grid cells in entorhinal cortex layer II and III (Hafting, Fyhn,
Bonnevie, Moser, & Moser, 2008; Moser & Moser, 2008) with
place cells in the hippocampus (Burgess, Barry, Jeffery, & O’Keefe,
2005; Fyhn, Hafting, Treves, Moser, & Moser, 2007; McNaughton,
Battaglia, Jensen, Moser, & Moser, 2006) and with head direction
cells in postsubiculum (Boccara et al., 2008; Taube, Muller, &
Ranck, 1990a) and entorhinal cortex layer V (Sargolini et al., 2006).
As described above, the head direction cells coupled with cells
responding to translational speed could provide a velocity signal at
each point on a trajectory. This velocity signal could drive a phase
code for continuous space based on intrinsic cellular properties
that drive the spiking activity of grid cells. The grid cells could
then drive spiking activity in a population of hippocampal place
cells, as shown in a number of models (Hasselmo, 2008c; Rolls
et al., 2006; Solstad et al., 2006). The encoding of a trajectory
would involve strengthening either direct or indirect synaptic
connections between hippocampal place cells in region CA1
and cells coding velocity in the postsubiculum or entorhinal
cortex layer V (Hasselmo, 2008c). As shown in Fig. 6, the
model effectively encodes and retrieves a range of different
spatiotemporal trajectories, with explicit representation of both
the spatial location and the time duration at specific locations.
In this particular model, the representation of the continuous

time scale for movements in continuous space is provided
by velocity. During encoding, this velocity signal arises from
behavior, which drives the cells coding velocity, and thereby
update the phase code in entorhinal grid cells, and the place
A B

C D WPH
multiplier

0 24Time(sec) 0 24Time(sec)

0.5

1.0

1.5

Fig. 6. Model of encoding and replay of trajectories. A. During encoding, behavior
drives the activity of head direction cells h(t) that drive the activity of grid cells in
entorhinal cortex layers II and III. The grid cells drive place cell firing p(t) in the
hippocampus. Links between state (place) and action (speed and head direction)
are made by strengthening synapses between place cells and head direction cells
WPH . B. During retrieval, the activity of place cells activates head direction cells
coding the velocity from that state which then activates the next encoded location.
C-D. The model simulates temporally structured replay of spiking activity of place
cells during REM sleep. The speed of replay depends on the strength of connections
WPH . Column C shows place cell activity during waking, with the same speed of
movement. Column D shows spiking during simulated REM replay. In each row of
Column D, the connectionsWPH are multiplied by a different value (0.5, 1.0 or 1.5)
to change overall strength and thereby speed of REM replay.

code of hippocampal place cells. Hebbian synaptic modification of
connections from place cells to cells coding velocity encodes the
velocity association with individual locations, effectively encoding
the rate of movement through continuous time. During retrieval,
the activity of cells coding velocity is not driven by behavioral
input, but instead by the spread of activity across previously
modified synapses from hippocampal place cells. The retrieval of
velocity drives grid cells which drives a new pattern of place cell
activity which drives different cells coding a different magnitude
of velocity in a recurrent loop that can progressively retrieve
trajectories with an explicit representation of changes in speed
at different locations (Hasselmo, 2008c, in press; Hasselmo &
Brandon, 2008). Thus, a circuit involving entorhinal cortex and
hippocampus results in the retrieval of a previously experienced
high resolution trajectory through continuous dimensions of space
and time.
In contrast to this coding of velocity, the representation of

continuous time could arise from other sources such as running
speed, or simple time duration. The mechanism described above
using velocity has difficulty with the coding of overlapping
trajectories, andwith coding of the temporal duration of stationary
periods. These properties can be provided by the additional role of
cells in which the membrane potential oscillations or persistent
spiking do not depend on velocity, but respond only to speed,
thereby coding the arc length of the trajectory (Hasselmo, 2007).
Alternately, the coding of time can be provided by oscillatory
interference of cells that keep the same frequency over time,
thereby directly coding continuous time instead of continuous
space (Hasselmo et al., 2007). This provides a temporal code
that differentiates trajectories that overlap in the same spatial
location at different times, as well as allowing coding of the
temporal duration spent stationary at a single location (Hasselmo,
2008c, in press; Hasselmo et al., 2007). Alternately, the phase
reset of temporal oscillations regulated by velocity can provide
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context-dependent activity in the grid cell model driven by
velocity (Hasselmo, 2008a).

8. Continuous versus discrete models

This model contrasts with most previous models in which indi-
vidual mental states are coded as discrete patterns of spiking ac-
tivity (Hopfield, 1982; Jensen & Lisman, 1996b; Lisman & Idiart,
1995), and transitions between these states are coded by synap-
tic connections between populations of units (Kleinfeld, 1986; Lis-
man, 1999). Most previous models focus on forming associations
between sequential states encountered during behavior, resulting
in a discrete stepwise sequence (like a series of static images of in-
dividual instants). If a series of states are encountered during an
episode, formation of synaptic associations between these states
alone will result in a rapid transition through the states at a speed
much higher than the original experience. In contrast, the new
framework presented here forms associations between the contin-
uous state and a continuous quantitative representation of actions
or transitions, allowing a continuous dimension of action magni-
tude to determine the rate of transition between different states in
the memory (Hasselmo, 2008c, in press).
Many models of memory function in neural circuits use a

discrete representation of experience. Traditional memory models
in mathematical psychology use discrete vectors to represent
items, without explicitly representing their spatial relationships
(Gillund & Shiffrin, 1984). Many models of hippocampal memory
function focus on fixed point attractor dynamics (Hasselmo,
Schnell, & Barkai, 1995; Treves & Rolls, 1992, 1994) inwhich neural
activity evolves toward encoded memories that are discrete stable
patterns of activity. Networks with two time scales of connectivity
have beenused to store sequences, but these still have the nature of
discrete representations, with fast dynamics leading to fixed-point
attractors, and slow dynamics terminating each discrete fixed-
point attractor to allow a dynamical transition toward another
discrete fixed point attractor (Kleinfeld, 1986; Lisman, 1999). In
contrast, episodic memories appear to involve representations of
continuous space and time. The continuous representation of time
presented here more closely resembles the oscillatory codes for
encoding word order in immediate serial recall used in the OSCAR
model (Brown, Preece, & Hulme, 2000), or the temporal context
model used tomodel conditional response probability in free recall
(Howard, Fotedar, Datey, & Hasselmo, 2005; Howard & Kahana,
2002). In addition, this use of oscillations resembles the use of
oscillations for encoding temporal intervals inmodels of the timing
of behavioral responses (Matell & Meck, 2004; Miall, 1989).

9. Mechanism of episodic memory and mental time travel

The framework described above has the specific property
that it effectively encodes not only the individual states during
an episode, but it encodes the temporal duration of transitions
between these individual states, and the duration of individual
states (Hasselmo, in press). Thus, it effectivelymaintains the timing
properties of the episode. This can be considered as an element
of the property of mental time travel, which has been described
as an essential element of episodic memory (Eichenbaum &
Cohen, 2001; Tulving, 1983, 2002), as well as an element of
future planning (Clayton, Bussey, & Dickinson, 2003; Suddendorf
& Corballis, 1997). In fact, studies of patients with damage
to the entorhinal cortex and hippocampus have demonstrated
impairments of mental time travel into future or imaginary events,
showing up as a deficit in the richness of description of both past
and future events (Hassabis, Kumaran, Vann, & Maguire, 2007;
Hassabis & Maguire, 2007; Kirwan, Bayley, Galvan, & Squire, 2008;
Levine, Svoboda, Hay, Winocur, & Moscovitch, 2002; Schacter,
Addis, & Buckner, 2007).
The travel along future trajectories through familiar environ-

ments could utilize the same machinery as episodic retrieval, but
instead of a recurrent loop driving the retrieval of a previous tra-
jectory, the actions along the trajectory would be determined by
prefrontal input to the cells coding velocity. For example, if you
wanted to go forward along a familiar hallway and then turn right
at a particular door, the prefrontal commands could drive head di-
rection cells coding the initial allocentric velocity. These cells could
thendrive the phase code of grid cells to progressively update place
cell populations representing different locations.When the desired
location is reached, prefrontal input could drive a different set of
head direction cells to change the direction of the velocity vector
to the right.
The theoretical framework presented here (Hasselmo, 2008c,

in press) is supported by neurophysiological data on the replay
of previously experienced neurophysiological activity in animals.
Early studies showed reactivation of previously experiencedneural
ensembles during slow wave sleep (Pavlides & Winson, 1989;
Skaggs & McNaughton, 1996; Wilson & McNaughton, 1994).
In particular, recording during REM sleep shows temporally
structured replay of neurophysiological activity of place cells,
that is, replay of place cell activity with the same timing
intervals observed duringwaking behavior (Louie &Wilson, 2001).
The model presented here effectively simulates the temporally
structured replay during REM sleep (Hasselmo, 2008c), as shown
in Fig. 6. In contrast, previous models of replay used strengthening
of excitatory synapses between place cell populations activated at
different locations on a trajectory (Hasselmo & Eichenbaum, 2005;
Jensen & Lisman, 1996a, 1996c; Levy, 1996;McNaughton &Morris,
1987; Minai & Levy, 1993; Treves & Rolls, 1994; Tsodyks, Skaggs,
Sejnowski, & McNaughton, 1996; Wallenstein & Hasselmo, 1997).
This allowed retrieval of sequences, but at a much faster speed
than during initial encoding, failing tomaintain the original timing
relationships.
The evidence for temporally structured replay during REMsleep

indicates that neural circuits in animals can replay episodes with
an explicit representation of the explicit relative time the rat spent
in a previously experienced location (Louie & Wilson, 2001). The
model presented here predicts that this replay should involve
replay of activity in cells coding rat head direction, and this effect
has been tested by simultaneous unit recording data from an
array of head direction cells, during waking and REM sleep. The
necessarymachinery formental time travel may be present in rats.
Other data has shown that replay type phenomena appear to occur
during waking at points when a rat might be performing vicarious
trial and error, using retrieval of prior episodes to choose between
different possible future actions (Johnson & Redish, 2007). Thus,
neurophysiological data on replay supports this model of mental
time travel for episodic memory.

10. Interaction of memory systems

Previous work has shown how specific behavioral tasks can
be solved with different types of memory strategies (Zilli &
Hasselmo, 2008b, 2008c), or the interaction of memory systems
(Zilli & Hasselmo, 2008a). Human imaging data shows that
active maintenance of activity in the absence of a stimulus is
correlated with the subsequent memory for that stimulus at a
later time (Schon et al., 2005; Schon, Hasselmo, Lopresti, Tricarico,
& Stern, 2004). The new modeling framework presented here
provides potential mechanisms for simultaneously modeling the
interaction of memory systems such as working memory and
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episodicmemory (Hasselmo&Stern, 2006). For example, the active
maintenance of a phase representation can be considered to be
a working memory for current spatial location (or the working
memory for the presence of an item). However, once the phase
code activates the loop through hippocampal place cells and head
direction cells to alter the current phase, this can be considered to
be retrieval of episodic memory. Thus, this framework allows the
interaction of workingmemorywith episodic memory for solution
of the task, consistent with mathematical analysis showing how
different types of memory can disambiguate individual states in a
behavioral tasks (Zilli & Hasselmo, 2008a).
Previous work on memory guided behavior in a spatial

alternation task (Hasselmo & Eichenbaum, 2005) used episodic
retrieval of sequences of discrete states (locations), due to
associations between cells representing individual places. That
model used retrieval at each location, but was extended with a
model using selection of memory actions such as ‘‘encode’’ and
‘‘retrieve’’ to perform memory functions only when necessary
for task performance (Zilli & Hasselmo, 2008c). The selection of
memory actions could guide the selection of activity to initiate
retrieval, and similar mechanisms could be used to drive mental
time travel in imaginary or future locations.
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