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SUMMARY

The spatial scale of grid cells may be provided by
self-generated motion information or by external
sensory information from environmental cues. To
determine whether grid cell activity reflects distance
traveled or elapsed time independent of external in-
formation, we recorded grid cells as animals ran in
place on a treadmill. Grid cell activitywas only weakly
influenced by location, but most grid cells and other
neurons recorded from the same electrodes strongly
signaled a combination of distance and time, with
some signaling only distance or time. Grid cells
were more sharply tuned to time and distance than
non-grid cells. Many grid cells exhibited multiple
firing fields during treadmill running, parallel to the
periodic firing fields observed in open fields, sug-
gesting a common mode of information processing.
These observations indicate that, in the absence of
external dynamic cues, grid cells integrate self-
generated distance and time information to encode
a representation of experience.

INTRODUCTION

Grid cells are neurons that fire when a rodent occupies any of a

periodic array of locations within an open field (Hafting et al.,

2005). Based on the observations that grid cell firing patterns

persist when external visual information is removed and the

same periodic spatial pattern is maintained across environ-

ments, it has been suggested that grid cells might update the an-

imal’s location by integrating path-based self-generated motion

cues (McNaughton et al., 2006; Moser et al., 2008). In addition,

path integration can be accomplished based on time traveled

at a constant speed (Huth, 2013), and there is considerable evi-

dence that temporal signals are generated in a network of

cortical and striatal areas that contribute to timing and provide

direct or indirect inputs to the medial entorhinal cortex (MEC)

(Davis et al., 2009; Janssen and Shadlen, 2005; Kim et al.,

2013; Matell et al., 2003a, 2003b; Roberts et al., 2013; Watrous

et al., 2013). Also, grid cells depend on inputs from the hippo-

campus (Bonnevie et al., 2013), which is known to represent

temporal information (Kraus et al., 2013; MacDonald et al.,
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2011, 2013; Naya and Suzuki, 2011; Pastalkova et al., 2008).

However, there is no direct evidence that grid cells represent

either distance traveled or time elapsed during movement. In

addition, there is strong evidence that external visual inputs

also strongly influence the firing patterns of grid cells: grid cell

firing patterns are anchored to external landmarks (Barry et al.,

2007; Hafting et al., 2005), have access to current heading direc-

tion (Sargolini et al., 2006; Taube, 1995), and are influenced by

experience in an environment (Barry et al., 2012), its structure

(Derdikman et al., 2009), and geometry (Barry et al., 2007; Krupic

et al., 2015; Stensola et al., 2012). These findings have led Pou-

cet et al. (2014) to challenge the idea that grid cells provide a dis-

tance metric based on self-generated cues alone, although they

allow that grid cells might signal distance when visual cues are

absent. Here, we explored the extent to which grid cells are acti-

vated based on location, time, and distance cues by recording

their activity as rats ran in place on a treadmill in a visually rich

environment. We report that grid cells provide an integrated rep-

resentation of self-generated distance and time information in a

situation where visual-spatial cues are present but visual flow is

eliminated.

Rats performed a spatial alternation task on a figure-eight

maze (Figure 1A; Movie S1) in which, on each trial, they ran for

14–20 s at 30–49 cm/s on a motorized treadmill embedded in

the center stem of the maze. On individual sessions, either the

duration (16 s) or the distance of the run (700 cm) was fixed,

and the treadmill speed varied randomly across trials. In four

rats over 136 recording sessions, 177 cells were classified as

grid cells based on spatial firing patterns during open field

foraging (see Experimental Procedures). Their firing properties

were compared with 147 non-grid cells recorded simultaneously

on the same tetrodes (Tables S1 and S2). Although cells were re-

corded from the MEC and neighboring areas (Experimental Pro-

cedures; Figures S2 and S3), grid cells from all regions were

similar in their gridness and other features of spatial coding (Fig-

ures S5E–S5G), and so these populations were combined to

explore whether grid cells defined by their spatial coding proper-

ties also encode time or distance.

RESULTS

Grid Cell Firing Patterns Are Modulated by Time and
Distance as Rats Run in Place
Our initial analyses focused on whether grid and non-grid cells

fired continuously during running in fixed place—as might be
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Figure 1. Grid Cells Fire at Specific Times and Distances during Treadmill Running

(A) Maze with treadmill in the center stem.

(B–H) In (B–F), example grid cells show their firing patterns during treadmill running in raster plots (left-top), histograms of average firing over time (left-middle),

and normalized firing rate plots (left-bottom) and their open field spatial firing patterns (right-top) and spatial autocorrelations (right-bottom). In distance-fixed

sessions (B–D), activity is plotted in terms of distance run during treadmill runs; in time-fixed sessions (E–H), activity is plotted in terms of elapsed time. The activity

during treadmill running of the grid cell in (D) is shown inMovie S1. Figure S1 includes additional examples, including firing activity duringmaze traversal (when the

treadmill is stopped).

See also Figure S1 and Movie S1.
expected if they represent allocentric location (Hartley et al.,

2014)—or varied in firing rate, indicating influences of self-

generated information about elapsed time or distance run. We

found many grid cells that fired at specific distances run (most

easily observed in distance-fixed sessions, e.g., Figures 1B–

1D; Figures S1A–S1C) or at specific moments (most easily

observed in time-fixed sessions, e.g., Figures 1E–1H and

S1D–S1F). Indeed, most grid cells (162; 92%), as well as most

non-grid cells (113; 77%), fired at specific moments or dis-

tances during treadmill running. Similar to previous observa-

tions of CA1 neurons in animals performing the same task

(Kraus et al., 2013), many of these same neurons also ex-

pressed firing fields in other regions of the maze when the tread-

mill was off (Figure S1).
To evaluate the distributions of grid and non-grid cells that

encode time or distance, we initially combined the data from

time-fixed and distance-fixed sessions using a measure of the

fraction of the total run (in time or distance; see Experimental Pro-

cedures). We found that the firing fields of both grid and non-grid

cells were distributed across the entire treadmill run (Figures 2A

and 2B; Figures S2A–S2D). Overall, grid cells more precisely

measured run position than other types of neurons recorded in

the same brain areas. Thus, grid cells had significantly narrower

firing fields than non-grid cells (Kolmogorov-Smirnov test: p =

2 3 10�10; Wilcoxon rank-sum test: p = 1 3 10�7; Figures 2D

and S2E) and were characterized by significantly sharper tuning

(peak firing rate divided by average firing rate) compared to

non-grid cells (Kolmogorov-Smirnov test: p = 7 3 10�15;
Neuron 88, 578–589, November 4, 2015 ª2015 Elsevier Inc. 579
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Figure 2. Characteristics of Grid Cells dur-

ing Treadmill Running

(A and B) Ensemble firing rate maps showing

normalized spiking rate during treadmill running for

grid cells (A) and non-grid cells (B). Firing rate is

plotted in terms of ‘‘fraction of run’’ to allow

ensemble analysis across both time-fixed and

distance-fixed sessions.

(C–F) In (C), distribution is shown of the number of

firing fields observed for each type of cell (CA1

data from Kraus et al., 2013). This legend applies

to (C–F). (D) Distribution (top) and cumulative dis-

tribution (bottom) of the width of the first firing field

for each neuron. (E) Distribution (top) and cumu-

lative distribution (bottom) of the peak rate of each

neuron divided by the average rate of each neuron.

A smaller value indicates broader firing fields.

Vertical black line indicates the maximum differ-

ence between cumulative distributions. (F) Distri-

bution of field widths as a function of the time of

peak firing. Open circles indicate fields cut off by

the end of the treadmill run.

See also Figures S2 and S5 and Table S1.
Wilcoxon rank-sum test: p = 3310�16; Figures 2E andS2F), even

as firing fields for both cell types that appeared later during tread-

mill running were wider (Pearson’s linear correlation; grid cells:

r = 0.56, p = 4 3 10�20; non-grid cells: r = 0.65, p = 3 3 10�15;

Figures 2F and S2G). In addition, many grid cells (77; 44%) had

two or more firing fields (Figures 1, 2C, 4, and S1; Table S1). In

contrast, fewer non-grid cells (27; 18%) had multiple fields (Fig-

ure 2C; Table S1) compared to grid cells, c2(2) = 28.88, p = 5 3

10�7; and in a previous study (Kraus et al., 2013), we observed

only 6% of CA1 cells with multiple firing fields during treadmill

running compared to grid cells, c2(2) = 225.3, p z 0. Therefore,

parallel to their spatial firing patterns in the open field, the firing

patterns of grid cells are characterized by precise, multi-peaked

activations while animals run in place. Furthermore, time and dis-

tance modulation by grid cells, expansion of field size over time,

and multiple firing fields were observed in each animal and brain

area studied (see Experimental Procedures), indicating similar

temporal coding features among grid cells throughout cortical

areas of the hippocampal system.

Spatial Position Cannot Account for Time and Distance
Fields
We quantified the degree to which the rat’s location systemati-

cally varied as a function of the fraction of the treadmill run by

determining the area that is visited in each of five evenly divided

bins (time bins for time-fixed sessions and distance bins for dis-

tance-fixed sessions). We refer to this area as AAB (‘‘AB’’ stands

for ‘‘all bins’’) to distinguish it from the area accounting for 75%of

the time spent on the treadmill, which we refer to as A75. The

average size of AAB was 44 cm2 (SD = 24.1 cm2; minimum

[min], 11 cm2; maximum [max], 156 cm2), and the rats spent,

on average, 80% of the treadmill run within this area (SD = 9%;

min, 34%; max, 93%). The average size of A75 was 28 cm2
580 Neuron 88, 578–589, November 4, 2015 ª2015 Elsevier Inc.
(SD = 16.3 cm2; min, 6 cm2; max, 89 cm2), and AAB contained,

on average, 89% of A75 (SD = 12%; min, 30%; max, 100%), indi-

cating that the rats’ positions were relatively stable throughout

the treadmill run and that each rat spent a majority of the run in

the same area.

To quantitatively evaluate the extent to which the observed

firing patterns could be explained based on location alone, we

used the spatial firing rate map of each neuron (Figure 3) as a

look-up table to generate predicted firing rates for that neuron

based on the rat’s position at each point in the run (time for

time-fixed sessions; distance for distance-fixed sessions; see

Experimental Procedures). Next, we generated two tuning

curves showing the firing rate of that neuron as a function of

time or distance spent on the treadmill for both the actual firing

(the empirical time or distance tuning curve) and the firing predic-

tions based solely on the spatial firing rate map (the model time/

distance tuning curve) (Figure 3). If location is sufficient to explain

the observed firing patterns of each neuron, then the two tuning

curves for that neuron should match. Alternatively, if the rat was

perfectly stationary while on the treadmill, or if the firing of that

neuron was completely uncorrelated with location, the model

tuning curve should be perfectly flat.

A bootstrap method was used to generate confidence inter-

vals around the time/distance tuning curve for each neuron

and to identify regions where the two curves were significantly

different. Although nearly all neurons expressed some degree

of spatial tuning (indicated by a non-flat model tuning curve), in

the majority of neurons with firing fields on the treadmill (155

out of 162 grid cells and 99 out of 113 non-grid cells), there

was a region of significant difference between the empirical

and model tuning curves, indicating that information about loca-

tion was not sufficient to explain the firing activity seen on the

treadmill. These findings were similar to previous observations
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Figure 3. Spatial Activity Cannot Account for Time and Distance Firing Fields

(A–F) Six individual neurons recorded from different recording sessions. For each neuron, there are two panels: the left panel is a spatial firing rate map, and the

right panel includes two distance (A–D) or time (E and F) tuning curves. Neurons from distance-fixed sessions (A–D) are plotted in terms of distance run, and

neurons from time-fixed sessions (E and F) are plotted in terms of elapsed time. The blue curve is the observed (empirical) tuning curve of a single neuron,

calculated based on the actual firing of that neuron. The red curve is themodel-predicted tuning curve based on the spatial firing rate map given in the left panel of

each pair. Shaded region denotes 95%confidence bounds on firing rates calculated using a bootstrapmethod. A bin size of 1 pixel3 1 pixel with an SD of 3 pixels

was used for this analysis.
of CA1 neurons in animals performing the same task (Kraus et al.,

2013), indicating that, during movement in the absence of visual

flow, spatial information from visible landmarks and boundaries

is not sufficient to drive hippocampal cells or grid cells.

Grid Cells Signal Time Elapsed and Distance Traveled
Punctate activations of grid cells could reflect distance traveled

on the treadmill, consistent with the view of grid cells as involved

in path integration based on self-generated movement cues
(Buzsáki and Moser, 2013; Hafting et al., 2005; McNaughton

et al., 2006; Moser et al., 2008), or elapsed time as well as dis-

tance during runs, similar to time and distance signals observed

in hippocampal neurons (Kraus et al., 2013). Exploiting our

design in which treadmill speed varied across laps, we evaluated

the extent to which firing could be explained by time and dis-

tance separately and found that both factors contribute to

differing extents among neurons. Figures 4A and 4B show two

examples of grid cells that were more strongly influenced by
Neuron 88, 578–589, November 4, 2015 ª2015 Elsevier Inc. 581



distance than time. The firing field in Figure 4B and both firing

fields in Figure 4A shifted toward earlier times as the treadmill

speed was increased (Figures 4A and 4B, left panels, from top

to bottom in the raster plot), but the fields were largely fixed at

a particular distance (Figures 4A and 4B, right panels).

Conversely, Figures 4C and 4D show two grid cells that were

more heavily influenced by time than distance. The field in Fig-

ure 4D and the second field in Figure 4C shifted toward farther

distances as the speed increased but was fixed at a particular

time. Figure 4E shows a non-grid cell that wasmore heavily influ-

enced by time than distance.

To directly compare the extent to which these dimensions are

influential across the populations of grid and non-grid cells, three

different generalized linear models (time, distance, and time +

distance) were fit to the data to quantify the relative influences

of time elapsed and distance traveled. A total of 162 grid cells

and 113 non-grid cells were analyzed using this framework

(Table S2). 80 grid cells (49%) were significantly influenced by

time, c2(5) > 11.1, p < 0.05; 88 (54%) were significantly influ-

enced by distance, c2(5) > 11.1, p < 0.05; and 66 grid cells

(41%) were significantly influenced by both time and distance

during treadmill running (Figures 4F, 4G, S3A, S3B, S3E, and

S3F; Table S2). Notably, non-grid cells were also influenced by

a combination of time and distance (Figures 4H, 4I, S3C, S3D,

S3G, and S3H; Table S2).

We used a pseudo-R2 measure based on the log-likelihood to

determine the degree to which a particular generalized linear

model captured the variance in the spike rate for each neuron

(see Experimental Procedures). Figure S4 shows the cumulative

distribution of the pseudo-R2 values calculated for each neuron

for each of six different generalized linear models. The pseudo-

R2 for the full model (including time, distance, space, spiking his-

tory, and treadmill speed) averaged 0.097 (median = 0.089) for

grid cells and 0.069 (median = 0.060) for non-grid cells. See Table

S3 for average and median pseudo-R2 values for each general-

ized linear model and Table S4 for pseudo-R2 values for the

example neurons presented in Figures 1, 4, and S1. This analysis

revealed that, on average among grid cells, just time or just dis-

tance performed better than just space at capturing the variance

in the spike rate and that speed contributed very little. However,

for non-grid cells, just space performed better, on average, than

just time or just distance. Spiking history was the strongest pre-

dictor of spike rate variation, which reflects the nature of neurons

in thesebrain regions to fire in bursts. By including the spiking his-

tory in the three generalized linear models that were used in our

deviance calculations, we accounted for this potential confound

when investigating the impact of time and distance.

During Treadmill Running, the Size and Spacing of Firing
Fields for Grid Cells Enlarge Beyond that Expected from
Their Properties during Open Field Running
Previous studies have reported that the size and spacing of the

spatial fields of grid cells are constant among different familiar

environments (Barry et al., 2007, 2012; Fyhn et al., 2007; Hafting

et al., 2005). However, in mice traversing a linear track in virtual

reality, some grid cells are strikingly aperiodic (Domnisoru et al.,

2013), and the scale of grid fields in rats traversing linear tracks

differs from that in open fields (Brun et al., 2008; Hafting et al.,
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2008). Also, proprioceptive and vestibular cues are likely not

the same when running in place on a treadmill as when running

freely in the open field, and in the treadmill, there is a strong

mismatch between self-generated motion cues and the lack of

optic flow. Here, we compared the size and spacing of firing

fields on the treadmill to those expected from the observed

grid cell firing patterns recorded from the same cells when the

rats ran in the open field.

A uniform 2D grid field was simulated for each recorded grid

cell, using the observed grid cell width and spacing as input to

a simulation of the expected grid field pattern in an environment

with dimensions as large as the distance traveled on the tread-

mill. Then, we compared the number, size, and spacing of firing

fields observed during treadmill running with both those

observed in the open arena and separately with simulated 1D

paths through the uniform 2D grid field.

Firing fields observed on the treadmill were much larger and

further spaced than those observed in the open field and those

predicted by simulations. Also, in nearly every grid cell, many

fewer time fields were observed than predicted by these simula-

tions (Figure 5A). In addition, the simulations predicted that when

comparing two adjacent fields, the first field should bewider than

the second field just as often as the second field is wider than the

first field (Figure 5B, inset). In contrast, in nearly all grid cells with

two firing fields during treadmill running, the second field was

larger than the first field (Figure 5B), paralleling our previous

observation of CA1 time cells (Kraus et al., 2013) and suggesting

that time and distance representation are non-linear throughout

this system. A possible explanation of the differences in number,

size, and spacing of fields might be that the grid fields are ‘‘re-

scaled’’ for the distance run, although rescaling observed in

extended environments is temporary (Barry et al., 2007). None-

theless, rescaling predicts a strong correlation between the

open field and treadmill field sizes and spacing, but we found

no correlation between the simulated and observed first firing

field sizes (Figure 5C; r = 0.09, p = 0.25), second firing field sizes

(Figure 5C; r = 0.078, p = 0.50), or the spacing (Figure 5D; r =

0.031, p = 0.79). Therefore, the spiking output of grid cells based

on purely temporal and self-motion information differs from the

spiking output when external cues are available in open arenas

and when the dynamics of optic flow during motion registers

with temporal and motion cues. Previous simulations demon-

strated that both grid cells and time cells could be simulated

with the same circuit model (Hasselmo, 2008). Thus, the differ-

ence from expected size and number of firing fields found here

on the treadmill could be due to the absence of fiducial time sig-

nals that could keep the circuit spiking calibrated on the tread-

mill, in contrast to the presence of fiducial sensory landmarks

that keep the grid cell spiking calibrated during movement

through space. Time is typically characterized by a scalar coding

so that the resolution of timing becomes broader as time ad-

vances (Gibbon et al., 1997; Matell and Meck, 2004; Oprisan

and Buhusi, 2014). Consistent with scalar coding of time in brain

systems, coding of distance by grid cells duringmovement in the

absence of visual calibration involves a systematic enlargement

of field size with increasing time elapsed (as is the coding of time

in grid cells and CA1 neurons; see Howard and Eichenbaum,

2013).
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Figure 5. Time Fields on the Treadmill Are Inconsistent with 1D Paths through a 2D Grid Field
(A) Mean number of firing fields observed for each simulation of a grid cell compared to the number of experimentally observed firing fields for that grid cell. Red

line indicates median, box extends from the 25% to the 75% percentile, and whiskers extend to full range.

(B) Comparison of the observed first firing field width to the observed second field width in grid cells with multiple fields. (Inset) Comparison of the simulated first

field width to the simulated second field width. Contrast simulated results (inset) with observed results in (B).

(C and D) Comparisons of the median simulated first and second field widths (C) and field spacing (D) to the experimentally observed field width and spacing.

‘‘First field’’ includes the only field in neurons where only one field was observed.
DISCUSSION

The present findings inform us about information processing of

grid cells during motion in the presence of visual cues but

absence of optic flow. These findings bear a superficial similarity

to those of Derdikman et al. (2009), who observed a striking frag-

mentation of grid fields into similar spatial firing patterns as rats

ran in one direction repeatedly along each of several parallel al-

leys of a multi-compartment maze. In this situation, the visual

landmarks and optic flow were similar across alleys in each di-

rection, and the findings indicated these cues could drive the
Figure 4. Grid Cells Encode Both Distance and Time

(A–E) Examples of treadmill activity of grid cells (A–D) and one non-grid cell (E), wh

(C–E). For each neuron, the same firing activity is plotted as a function of both tim

(right panels). Blue, brown, and green ticks (and tuning curves) represent the slowe

in blue, brown, and green indicate the peak firing rate in spikes per second (Hz) of t

runs sorted in order of slowest speed (on top) to fastest speed (on bottom).

(F–I) In (F and H), deviance of two GLMs comparing the effect of removing time ve

model from the full (space + distance + time) model, effectively measuring the con

timemodel from the full (space + distance + time)model, effectivelymeasuring the

cells (F) or non-grid cells (H). Dots above the diagonal indicate a stronger influence

above the horizontal red line are significantly influenced by distance; dots to the

significance are based on a chi-square test, taking into account the number of par

Bonferroni correction to account for multiple comparisons. (G and I) Strength o

distance deviances (G) for the grid cells that are shown in (F) and (I) for the non-g

See also Figures S3 and S4 and Tables S2, S3, and S4.
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spatial firing patterns of grid cells. However, they attributed the

fragmentation to visual and tactile segmentation of the environ-

ment, rather than constraints on locomotor direction, because

the grid field fragmentation was not observed when the rats

ran the same repeating movement pattern in an open arena.

Here, during one-directional locomotion, when only time and

movement cues provide information about distance, a different

pattern emerged: grid cell activity signaled a non-linear, often

multi-peaked representation of time and distance traveled that

is quite distinct from the pattern observed when information

about movement from the flow of external cues is available.
ose firing patterns are more consistently explained by distance (A and B) or time

e since the treadmill started (left panels) and distance traveled on the treadmill

st 1/3 of runs,middle 1/3 of runs, and fastest 1/3 of runs, respectively. Numbers

he corresponding group of runs. The rows in the raster plots represent treadmill

rsus removing distance. The x axis shows the deviance of the space + distance

tribution of time to the full model. The y axis shows the deviance of the space +

contribution of distance to the full model. Dots indicate deviances for either grid

of distance; dots below the diagonal indicate a stronger influence of time; dots

right of the vertical red line are significantly influenced by time. Thresholds for

ameters removed from each model (5 degrees of freedom), and adjusted using

f time versus distance coding, measured as the difference between time and

rid cells that are shown in (H).



Consistent with the path integration view, the firing patterns of

grid cells on the treadmill may reflect dead reckoning through

computation of path distance from a combination of time trav-

eled (internally generated) and running speed (sensed from

treadmill movement or proprioceptive feedback).

Grid cells, along with place cells and other neuronswith spatial

firing patterns in the hippocampus and interconnected areas,

provide the elements of a spatial representation system (Moser

et al., 2008). In particular, according to this perspective, grid cells

are viewed as central to path integration (McNaughton et al.,

2006). Consistent with this view, the present findings provide

the first direct evidence of grid cells signaling distance, which

is a key element of path integration calculations. However, the

same brain system also supports episodic memory, the ability

to remember distinct experiences organized in time as well as

space (Eichenbaum, 2014), and it has been proposed that the

same neural circuitry and algorithms that compute a spatial

mapping also support the temporal organization of episodic

memories (Buzsáki and Moser, 2013; Hasselmo, 2008, 2012).

Here, we extended the evidence supporting a common circuitry,

showing that grid cells provide an integrated representation of

self-generated time and distance information when location

and behavior are held constant. Along with the previous evi-

dence of time and distance coding in the hippocampus (Kraus

et al., 2013), the present findings support the view that the hippo-

campal system organizes representations of experience by a

combination of temporal and spatial dimensions in support of

memory for episodes in which those dimensions are prominent

organizing features.
EXPERIMENTAL PROCEDURES

Subjects and Behavioral and Electrophysiological Procedures

Subjects were four adult male Long-Evans rats, housed individually, kept on

food and water restriction, and monitored closely to maintain good health

and a minimum of 85% free feeding weight. Animals were given free access

to water at the end of the day and on weekends. All animal procedures were

approved by the Boston University Institutional Animal Care and Use

Committee.

On the first day of training, rats explored a figure-eight maze consisting of a

rectangular track (122 cm 3 91 cm; 48’’ 3 36’’) bisected lengthwise by a 122-

cm (48’’)-long central stem (Figure 1A;Movie S1). A 41-cm (16’’) segment of the

center stem was replaced with a commercially available treadmill (Columbus

Instruments) adapted to the maze. Two ports for delivering water reward

were located in the corners of the maze closest to the start of the central

stem, and a third water port was located at the end of the treadmill. The water

ports produced an audible click when they were activated.

For clarity, the term ‘‘session’’ is used to refer to an entire training or testing

period within a day (typically 40–60 min), the term ‘‘trial’’ is used to refer to one

full lap on the maze (starting and ending at either the left or right water port),

and the term ‘‘run’’ is used to refer to the period during which the treadmill

was moving within a trial (from the moment the treadmill starts to the moment

the stop command is sent to the treadmill). The brief period the treadmill took

to come to a complete stop was ignored in subsequent analyses. Starting on

the second day of training, rats began each session at the start of the central

stem. Throughout training, the rats were prevented from turning around. Once

a rat progressed forward so their hind legs were on the treadmill, they were

given a small water reward at the end of the treadmill and allowed 2 s to drink.

The treadmill was then activated at a low speed (5–10 cm/s), and the rat was

blocked from running forward off the treadmill while it was moving. The tread-

mill run wasmanually aborted, and the treadmill stopped immediately, if the rat

either turned around or if its hind legs reached the back edge of the treadmill.
The treadmill run was restarted (using the same settings but restarting the

elapsed time) once the rat returned to the treadmill facing forward. Aborted

runs that occurred during recording sessions were ignored in subsequent an-

alyses. The rat was given another small water reward for running continuously

until the treadmill stopped automatically. This reward typically caused the an-

imal to spend themajority of the treadmill run with itsmouth positioned close to

the water port. The rat was then allowed to either remain on the treadmill or exit

the treadmill and finish the lap. If the rat remained on the treadmill, the treadmill

was started again, with the same rules as before.When the rat exited the tread-

mill, it was forced to turn either left or right and was rewarded for reaching the

water port in the corner of the maze. Another trial was started when the rat

reached the center stem.

During the first few trials, each run lasted only 5–10 s. As the rat grew accus-

tomed to the treadmill, both the treadmill speed and the time required to

receive a reward were gradually increased until the rat was consistently

running 49 cm/s (maximum speed) for greater than 16 s. At this point, the pro-

tocol was changed to either a ‘‘distance-fixed’’ or a ‘‘time-fixed’’ protocol, and

the rat was required to complete one trial for each run on the treadmill. In both

protocols, the speed on each lap was randomly selected from within a prede-

termined range. The treadmill speed was held constant throughout each full

treadmill run, and a new speed was randomly selected at the start of each

treadmill run. In the ‘‘distance-fixed’’ protocol, the duration of each run was

adjusted so that the distance traveled was constant (700 cm), regardless of

the treadmill speed. In the ‘‘time-fixed’’ protocol, the duration of each run

was constant (16 s), regardless of the speed. The minimum speed was chosen

based on the lowest speed in which the individual rat ran smoothly on the

treadmill. If the treadmill runs too slowly, the rat stops running smoothly and,

instead, repeatedly runs forward then rides the treadmill back. The maximum

speed was limited by the endurance of the rat and the need to run enough laps

to fully sample the range of available speeds. The range of speeds used for

recordings was 30 cm/s to 49 cm/s.

Once the rat was comfortable with the randomly varying speeds, it was

trained to alternate left and right reward arms until it met a criterion of steady

running on the treadmill through the range of speeds used, for at least 40 trials

per session, with at least 75% accurate alternation. The total period of training

prior to the first recording was between 5 and 25 weeks.

Following training, rats were implanted with microdrives containing 16

independently drivable tetrodes angled �25� in the posterior direction, which

entered the skull through a craniotomy just anterior to the fissure between

parietal and postparietal skull bone (approximately anterior-posterior

[AP] = �8.0 mm; medial-lateral [ML] = �4.6 mm). Each tetrode consisted of

four strands of 0.0005’’ (12.7-mm) Stablohm 800 wire (California Fine Wire

Company), gold plated to reduce impedance to between 180 and 220 kU at

1 kHz. At the end of surgery, each tetrode was lowered �2–3 mm below the

dorsal surface. Rats were allowed at least 1 week recovery before training

resumed. Tetrodes were slowly advanced toward the MEC.

Electrical recordings were made using two different commercially available

systems. The first system was the 96-channel PlexonMultichannel Acquisition

Processor (MAP). On this system, each channel was amplified (1,0003–

10,0003) and band-pass filtered for high-frequency spiking activity (154 Hz–

8.8 kHz). Spike channels were referenced to another electrode to remove

movement-related artifacts. Action potentials were detected by threshold

crossing and digitized at 40 kHz.

The second recording system was a 64-channel Neuralynx Digital Lynx.

Each of the 64 channels (4 channels each, for 16 tetrodes) first passed through

a unity-gain VLSI headstage and then into pre-amplifiers. The signals were

then amplified (5,0003–20,0003) and band-pass filtered in the 0.3 Hz–6 kHz

range and digitized at 32 kHz. Signals were digitally processed online to detect

and capture action potentials indicated by threshold crossing on one of the

four channels within a tetrode. Custom-built adapters were used to allow the

Plexon headstages to interface with the Neuralynx electrode interface board.

To analyze the spatial firing properties of neurons, rats were trained to forage

for cut pieces of Kellogg’s Froot Loops cereal pieces, distributed randomly

throughout an open field environment. Rats were allowed to forage for enough

time to visit every region of the environment, typically 10–20 min.

One of two environmental arenas was used for open field foraging. The first

environment was located near the Neuralynx recording system and consisted
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of a box 162 cm 3 115 cm (64’’ 3 45’’) with walls 30 cm tall. A white cue card

was present on one wall of the chamber to provide a stable visual landmark.

This environment is hereinafter called the ‘‘Neuralynx open field.’’ This environ-

ment was used for prescreening and locating grid cells in rats 1, 3, and 4. In

addition, for 19 out of 43 sessions for Rat 1 and for 34 out of 43 sessions for

rat 3, open field foraging recorded on the Neuralynx open field was paired

with treadmill recordings from the Plexon system to classify neurons firing

on the treadmill as either grid cell or non-grid cell (see the following section,

‘‘Analysis Methods’’).

The second environment was placed on top of the figure-eight maze (near

the Plexon MAP system) and consisted of a black platform (122 cm 3

152 cm; 48’’ 3 60’’) with no walls. This platform is hereinafter called the

‘‘Plexon open field.’’ This environment was used for prescreening and locating

grid cells in rats 2 and 4 and to conduct open field foraging recordings imme-

diately following treadmill recording sessions for 24 out of 43 sessions for rat 1,

for 9 out of 43 sessions for rat 3, and for all sessions for both rats 2 and 4.

Once theta rhythmic neural activity (including grid cells) was detected,

treadmill recording sessions were initiated. At this point, tetrodes were turned

a maximum of �32 mm/day, and electrodes were allowed to settle overnight

before each recording session. Rats were regularly tested on either the Neura-

lynx open field (rats 1, 3, and 4) or the Plexon open field (rats 2 and 4) to look for

signs of new neural activity. Recordings were made on the treadmill on days

that appeared to have neural activity that had not been previously recorded.

All treadmill recordings were made using the Plexon MAP system.

For rat 1, all 42 daily recording sessions were distance fixed. For rat 2, all 23

recording sessions were time fixed. For rat 3, the first 34 recording sessions

used the time-fixed protocol, and the remaining nine recording sessions

were distance fixed. For rat 4, all 27 recording sessions were time fixed. For

rat 3, the first few training sessions using the distance-fixed protocol were

not used for data analysis.

After recordings were concluded, 40 mA of current was passed through each

electrode for 30 s before perfusion and histological confirmation of tetrode

placement. Brains were sectioned sagittally at 40 mmand Nissl stained. Histol-

ogy confirmed that, in both rat 1 (Figure S5A) and rat 2 (Figure S5B), the tetrode

tips were located in the MEC. Tetrodes implanted into rat 3 (Figure S5C) were

slightly more medial than intended and were not advanced far enough to reach

MEC, so those recordings came from the parasubiculum. The microdrive im-

planted on rat 4 (Figure S5D) was placed more medially, and at a more vertical

angle than intended, resulting in recordings in the subiculum and presubicu-

lum. Grid cells have been observed previously in each of these areas (Boccara

et al., 2010; Stewart, 2013). To ensure that all neurons analyzed came from re-

gions of the brain that contain grid cells, the non-grid cells used for data anal-

ysis came from the same tetrodes and the same recording sessions as grid

cells. Figures S5E–S5G show the range of values for gridness, eccentricity,

and spacing for grid cells in each of the four rats.

Analysis Methods

For treadmill recordings without accompanying Plexon open field recordings,

neurons recorded in the Neuralynx open field were matched to neurons

recorded on the same day on the treadmill using primarily the ratios of spike

amplitudes between the electrodes in a tetrode. For rat 1, 34 grid cells and

26 non-grid cells were detected using a recording on the Neuralynx open field

conducted the same day as the treadmill recording. The remaining 67 grid cells

and 41 non-grid cells were recorded on the Plexon open field in the same

recording as, and immediately following, the treadmill session. For rat 3, 25

grid cells and 40 non-grid cells were detected using the Neuralynx open field.

The remaining 6 grid cells and 13 non-grid cells were detected using the

Plexon open field. For both rat 2 and rat 4, all open field recordings were con-

ducted on the Plexon open field immediately following the treadmill session.

Following cluster cutting, all data analysis was performed using custom

scripts written for MATLAB (MathWorks). Tuning curves indicating the average

firing rate of a single unit as a function of spatial position, time spent on the

treadmill, or distance traveled on the treadmill, were calculated by first binning

the respective variable and counting the spikes occurring and the amount of

time spent in each bin. The spike counts and occupancy times in each bin

were independently smoothed by convolving with a Gaussian smoothing

kernel, and then the spike counts were divided by the occupancy times to
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calculate the average firing rate. For spatial tuning curves (also referred to as

spatial firing rate maps), we used 3-cm 3 3-cm bins and a circularly symmet-

rical Gaussian kernel with an SD of 3 cm. For temporal tuning curves, we used

150-ms bins and a Gaussian kernel with an SD of 450 ms. For distance (trav-

eled on the treadmill) tuning curves, we used 6-cm bins and a Gaussian kernel

with an SD of 18 cm.

In the ensemble time/distance tuning curves, each row represents the tuning

curve for a single neuron, normalized by dividing by the peak firing rate of that

neuron. For distance-fixed sessions, activity was plotted in units of distance;

and for time-fixed sessions, activity was plotted in units of time. Neurons are

sorted by the location of peak firing for that neuron.

To quantify a rat’s movement through physical space during treadmill

running, we divided the space occupied during treadmill running into

1-cm 3 1-cm bins and counted the number of video frames the rat spent in

each spatial bin. We then ranked the bins in order of decreasing number of

video frames and counted the number of bins required to reach 75% of the to-

tal video frames spent on the treadmill. This number was thenmultiplied by the

area of each bin (1 cm2) to get the area that accounted for 75% of the frames

spent on the treadmill. We refer to this area as A75: the smaller the value of A75,

the less the rat moved through space while on the treadmill.

We also quantified the degree to which the rat’s location systematically var-

ied as a function of the time or distance spent on the treadmill. To do this, we

took either the distance (for distance-fixed sessions) or the time (for time-fixed

sessions) spent on the treadmill and divided it into five evenly divided time/dis-

tance bins. We then counted the number of spatial bins that were occupied at

least once in each time/distance bin andmultiplied that number by 1 cm2 to get

the area that was visited consistently across the entire treadmill run. We refer

to this area as AAB (‘‘AB’’ stands for ‘‘all bins’’) to distinguish it from A75. If the

rat’s position systematically changed over the time/distance spent on the

treadmill, then AAB would be much smaller than A75. However, if the rat’s

movements were small and uncorrelated with time or distance, then both

A75 and AAB would be small and would largely overlap.

To test the hypothesis that the observed time and distance modulated firing

patterns could be entirely explained by the movement of the rat through space

(i.e., place fields), we used the spatial tuning curve for each individual neuron to

predict the firing rate of that neuron at each point in time (in time-fixed ses-

sions) or distance (in distance-fixed sessions). This is the same analysis

used in Kraus et al. (2013). We started by using the rat’s actual spatial position

(x and y room coordinates) and spike counts (sampled at 30 Hz) to generate a

traditional occupancy normalized spatial tuning curve based on the firing of

each neuron, as described earlier (using one camera-pixel-squared bins

[approximately 0.2 cm 3 0.2 cm] and a SD of 3 pixels). Then, we used the

spatial tuning curve as a look-up table: for each video frame, we looked up

the rat’s actual spatial coordinates in the spatial tuning curve to predict the

firing rate of the neuron in that video frame. The result is two vectors for

each neuron: one containing the actual spike counts for each video frame

and another containing the predicted firing rate based purely on the spatial

tuning curve and the rat’s trajectory. Then, we divided the time/distance spent

on the treadmill into 150-ms (or 6-cm) bins and generated two occupancy-

normalized tuning curves for each neuron: (1) an empirical tuning curve that

gave the actual average firing rate of the neuron for each bin and (2) a model

tuning curve that used the predicted firing rates to calculate the average firing

rate for each bin. We then used a bootstrap method to generate confidence

intervals around the tuning curve for each neuron. We generated N (N =

1,000) bootstrap samples by randomly sampling (with replacement) the activ-

ity of the neuron during a subset of all the treadmill runs during that recording

session. For each bootstrap sample, we calculated a tuning curve for both the

actual (empirical) firing rates and predicted (model) firing rates for that neuron,

and then we calculated the difference between these two tuning curves for

each time bin. The result was N empirical tuning curves, N model tuning

curves, andN difference curves, whichwere used to generate 95%confidence

bounds on each temporal tuning curve and the difference curve for each

neuron (Figure 3). Confidence bounds were adjusted for multiple comparisons

by finding group confidence bands using themethod detailed in Fujisawa et al.

(2008).

We considered significant any time or distance bins in which zero fell outside

the confidence bounds of the difference curve, and we considered the



empirical and model curves different if they were significantly different in at

least one time bin.

Firing Field Identification

Firing fields during treadmill running were detected by first calculating the

mean firing rate (across runs) and the SEM firing rate for each time or distance

bin. The mean and SE (multiplied by 1.96) were used to calculate 95% confi-

dence bounds for the firing rate in each bin. Firing fields were defined as adja-

cent bins where the lower confidence bound exceeded 0 Hz. Each edge of

each firing field was determined as the narrower of two conditions: either

the lower confidence bound crossed below 0 Hz, or the upper confidence

bound crossed below the peak value of the lower confidence bound for that

firing field (see sketch in the Figure S2 legend). Multiple firing fields occurred

when more than one set of non-adjacent bins met these criterions. Neurons

were considered to code time or distance if they had at least one firing field

during treadmill running. The space between firing fields was calculated as

the distance between the peaks of two adjacent firing fields.

Grid Cell Classification

Each neuron recorded during open field foraging was classified as ‘‘grid cell,’’

‘‘non-grid cell,’’ or ‘‘uncertain’’ using a ‘‘gridness’’ algorithm (based on the al-

gorithm used by Sargolini et al., 2006) that was verified independently by three

investigators. For each neuron, the spatial tuning curves were calculated using

a bin size of 3 cm3 3 cm and a Gaussian smoothing kernel with an SD of 3 cm.

An autocorrelation of the spatial tuning curve was then calculated based on

Pearson’s product-moment correlation coefficient, as described in Sargolini

et al. (2006). The six peaks surrounding the center peak of the spatial autocor-

relation were then automatically detected, and, if possible, an ellipse was fit to

the six peaks. The value of the autocorrelation was sampled at 1� increments

around the ellipse to produce a circular vector of 360 samples. A rotational

autocorrelation was calculated by rotating the circular vector in increments

of 1� and calculating the correlation between the original vector and the rotated

vector. The gridness score was computed as the difference between the

lowest correlation observed at 60� or 120� of rotation and the highest correla-

tion observed at 30�, 90�, or 150� of rotation.
For each neuron, three different investigators independently visually in-

spected the spatial firing rate map, spatial autocorrelation, and the trajectory

of the rat with spike locations superimposed, and they independently decided

whether the neuronwas a grid cell or not. During this process, the investigators

were able to select which peaks in the autocorrelation were the six peaks that

were fit to an ellipse and used by the gridness score calculation. Selecting the

peaks was allowed both to correct cases where the automatic peak detection

algorithm selected the wrong peaks and to ensure that the grid field spacing

was calculated accurately. Neurons were considered ‘‘grid cells’’ only if their

gridness scores were positive and if at least two out of three investigators inde-

pendently agreed that the neuron was, indeed, a grid cell. Neurons were

considered ‘‘non-grid cells’’ if their gridness scores were negative and if at

least two out of three investigators agreed that they were not grid cells. Other-

wise, the neurons were considered ‘‘uncertain’’ and were excluded from

further analysis. Only ‘‘non-grid cells’’ that were recorded simultaneously

and on the same tetrode as grid cells were used for analysis to ensure that

all cells included in the analysis were from brain regions that produce grid cells,

the remaining ‘‘non-grid cells’’ were excluded from further analysis. The mean

of the distance between the six peaks and the center of the autocorrelation

was used as the spacing of the grid field. The semi-major (a) and semi-minor

(b) axis of the ellipse connecting the six peakswas used to calculate the eccen-

tricity of each grid cell using the equation
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðb2=a2Þ

p
. The diameter of the

center peak of the autocorrelation that exceeded 0.2 was used as the width

of the grid fields (Hafting et al., 2005). Figures S5E–S5G show the range of

values for gridness, eccentricity, and spacing for grid cells in each of the

four rats.

Generalized Linear Model

A generalized linear model (GLM) framework was used to quantify the effects

of time, distance, and position on neural activity (Dobson, 2002; Kraus et al.,

2013; Lepage et al., 2012; MacDonald et al., 2011; McCullagh and Nelder,

1989; Truccolo et al., 2005). For this analysis, the spiking activity was modeled
as an inhomogeneous Poisson process, with the firing rate a function

of various covariates that modulate spiking activity (Lepage et al., 2012;

MacDonald et al., 2011). During treadmill running, the spiking activity was

modeled as:

lS+T+DðtÞ= ltimeðtÞ,ldistanceðtÞ,lspaceðtÞ,lspeedðtÞ,lhistoryðtÞ: (1)

Here, ls+ t +dðtÞ is the probability of a spike within each 1-ms time bin (‘‘S,’’

‘‘T,’’ and ‘‘D,’’ stand for ‘‘space,’’ ‘‘time,’’ and ‘‘distance,’’ respectively).

lnðltimeðtÞÞ is a fifth-order polynomial of time relative to the start of each tread-

mill run (Equation 2); lnðldistanceðtÞÞ is a fifth-order polynomial of the distance

the belt moved since the start of each treadmill run (Equation 3); lnðlspaceðtÞÞ
is a Gaussian-shaped place field composed of five parameters (Equation 4);

lnðlspeedðtÞÞ is a first-order polynomial of the treadmill speed (Equation 5);

and lnðlhistoryðtÞÞ contains the spiking history of the neuron (Equation 6).

ltimeðtÞ= e

P5
i=1

aitðtÞi
: (2)

ldistanceðtÞ= e

P5
i=1

bidðtÞi
: (3)

lspaceðtÞ= eg1xðtÞ+g2xðtÞ2 +g3yðtÞ+g4yðtÞ2 +g5xðtÞyðtÞ: (4)

lspeedðtÞ= ed1 + d2sðtÞ: (5)

lhistoryðtÞ=e

P5
i=1

qinðt�ðiÞms;t�ði�1Þ msÞ+
P11
i=6

qinðt�ð25i�120Þms;t�ð25i�145ÞmsÞ
: (6)

In Equation 2, tðtÞ refers to the time since the treadmill last started, and the

five a s are parameters that control the degree to which the spike rate is modu-

lated by time. In Equation 3, dðtÞ refers to the distance the treadmill belt has

moved since the start of each treadmill run, and the five b s are parameters

that specify the influence of this distance on spike rate. We selected a fifth-or-

der polynomial to model time and distance so we could capture both the sharp

onset and offset dynamics of firing fields and multiple peaks in the firing rate.

The fifth-order polynomial also uses the same number of parameters (five) as

the model for space, allowing for a direct comparison of the deviances be-

tween the different models. In Equation 4, xðtÞ and yðtÞ refer to the spatial po-

sition (x and y room coordinates) of the rat at time t, and five g s specify the

influence of space on spike rate. Spatial position is modeled as a Gaussian-

shaped place field and is included in the model to account for any location-

specific (i.e., place cell) firing activity. In Equation 5, d1 is a constant represent-

ing the mean firing rate, sðtÞ refers to the treadmill speed at time t, and d2

specifies the influence of speed on spike rate, consistent with the possibility

that speed coding could contribute to path integration (Hartley et al., 2014).

In Equation 6, nðt1; t2Þ is the number of spikes that occurred between

times t1 and t2. The 11 history terms represent five 1-ms bins going back

5 ms (0–1 ms, 1–2 ms, 2–3 ms, 3–4 ms, and 4–5 ms) and six 25-ms bins going

back an additional 150 ms (5–30 ms, 30–55 ms, 55–80 ms, 80–105 ms, 105–

130ms, and 130–155 ms). Each history term is modulated by one q parameter.

These time intervals were selected to allow the model to capture the dynamics

of both theta and gamma oscillations. Spike history is included in the model to

account for the tendency for neurons in this brain region to fire in bursts.

Equation 1 represents the full model encompassing the influence of space,

time, and distance on spiking activity (the ‘‘S+T+D’’ model). We similarly

defined two nested models:

lS+TðtÞ= ltimeðtÞ,lspaceðtÞ,lspeedðtÞ,lhistoryðtÞ (7)

and

lS+DðtÞ= ldistanceðtÞ,lspaceðtÞ,lspeedðtÞ,lhistoryðtÞ: (8)

Equation 7 defines the space and time (‘‘S+T’’) model, and Equation 8 defines

the space and distance (‘‘S+D’’) model.

The parameters for each model ðliÞ were estimated using an iterative

Newton-Raphson method to maximize the likelihood function ðGiÞ, as

described in Lepage et al. (2012). The likelihood function estimates the
Neuron 88, 578–589, November 4, 2015 ª2015 Elsevier Inc. 587



likelihood of the firing rate at time t being liðtÞ, given the observation of k spikes
at time t, assuming a Poisson distribution.

Gi =
Y
t

 
liðtÞkt e�kt

kt !

!
: (9)

The resulting maximum likelihoods for each model were then used in likeli-

hood-ratio tests to compare each nested model to the full model to determine

whether the additional covariates provided significant information about

spiking.

DðS+T+DÞ�T = 2ðlnðGS+T+DÞ � lnðGS+DÞÞ: (10)

DðS+T+DÞ�D = 2ðlnðGS+T+DÞ � lnðGS+TÞÞ: (11)

Equations 10 and 11 represent the likelihood-ratio tests used to calculate

the deviance of the ‘‘S+D’’ model and ‘‘S+T’’ model, respectively, from the

full model due to the removal of the covariates missing from the nested

model. The results are shown in Figure 4. Note that DðS+ T +DÞ�T is calculated

using GS+D (the likelihood of the model with space and distance, but without

time) so that the larger the value of DðS+ T +DÞ�T , the larger the influence of

time on spiking activity above and beyond the influence of the other param-

eters in the model (such as location-specific firing or spiking history). Under

the null hypothesis—that the addition of time to the nested model containing

space and distance (as well as speed and spiking history) does not provide

more information about spiking activity—the test statistic DðS+ T +DÞ�T has a

c2 distribution with 5 degrees of freedom. Similarly, under the null hypothe-

sis—that the addition of distance does not provide more information about

spiking activity to the nested model already containing space and time—

the test statistic DðS+ T +DÞ�D has a c2 distribution with 5 degrees of freedom.

In performing this analysis, we used Bonferroni correction to correct for

multiple comparisons. Next, we subtracted DðS+ T +DÞ�D from DðS+T +DÞ�T to

obtain a measure of the influence of time compared to the influence of

distance (Kraus et al., 2013; Lepage et al., 2012; MacDonald et al., 2011)

(Figures 4G and 4I).

DDT�D =DðS+T+DÞ�T � DðS+T+DÞ�D

DDT�D = 2ðlnðGS+T+DÞ � lnðGDÞÞ � 2ðlnðGS+T+DÞ � lnðGTÞÞ

DDT�D = 2ðlnðGTÞ � lnðGDÞÞ: (12)

The value of DDT�D will be negative if DðS+T +DÞ�D >DðS+ T +DÞ�T , indicating a

stronger influence of distance than time on the spiking activity. Similarly,

DDT�D will be positive if DðS+T +DÞ�T >DðS+T +DÞ�D, indicating a stronger influ-

ence of time on the spiking activity.

We used a pseudo-R2 ðpR2Þmeasure based the log-likelihood to determine

the degree to which a particular GLM captured the variance in the spike rate.

pR2
M =

lnðGMÞ � lnðGNullÞ
lnðGSatÞ � lnðGNullÞ: (13)

lnðGSatÞ is the log-likelihood of a saturated model (with one parameter for

each instance of time), lnðGNullÞ is the log-likelihood of the null model (using

just the average spike rate as a predictor), and lnðGMÞ is the log-likelihood

of the model in question. A pseudo-R2 value of 0 indicates that the model

performed no better than the null model, and a value of 1 indicates that

the model performed as well as the saturated model. The pseudo-R2 value

was calculated for each neuron for each of six different models. The ‘‘Full’’

model is as described in Equation 1. The remaining five models each used

a single set of parameters from the full model, as described in Equations

2–6.

2D Grid Field and 1D Treadmill Path Simulations

A uniform 2D grid field was simulated for each recorded grid cell, using the

observed grid cell width and spacing as input to the simulation, and then

1,000 1D paths through the 2D grid field (of the same length as the treadmill

run) were simulated. Simulated field widths were defined as the diameter of

the fields that exceeded 20% of the peak firing rate. The resulting paths
588 Neuron 88, 578–589, November 4, 2015 ª2015 Elsevier Inc.
were used to construct a distribution for each grid cell of the expected number

of firing fields, field widths, and field spacing. The observed treadmill firing field

frequency, width, spacing, and width-to-spacing ratio were then compared to

the simulated 1D treadmill paths.
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